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1 Introduction

Modern engineering structures and systems face growing challenges due
to climate change, ageing infrastructure, and evolving monitoring demands.
These factors drive traditional methods to their limits, highlighting the need
for more resilient and adaptive solutions. Hence, engineering systems must
integrate advanced materials, real-time monitoring, and intelligent design
strategies to address these demands. The rapid advancement of digital tech-
nologies is transforming structural health monitoring (SHM). Innovations
like the Internet of Things, virtual sensors, and digital twin technology en-
able real-time assessment of structural conditions, creating on-demand tools
to model physical assets and predict potential failures. This digital evolution
is particularly critical for renewable energy systems, which are expanding
and operating under constant environmental exposure. Ensuring their reli-
ability and efficiency requires high-performance materials, rapid diagnostic
methods, and advanced data processing tools. As a result, the demand for
smarter, more predictive SHM solutions continues to evolve and transform
the future of engineering infrastructure.

Wind energy has attracted notable attention over the past decade due
to its potential as a clean, renewable energy source and global support for its
development, especially in the intensified use of renewable energy [1]. The
sector’s latest projections evidence the growing importance of wind energy.
According to Global Wind Report 2024, [2], published by the Global Wind
Energy Council (GWEC), global installed wind power capacity will exceed
791 GW by the end of 2028 (see Figure 1.1), with an average of 158 GW of
new installations annually until then. This rapid expansion is concentrated
in the key markets of China, the EU, the US, India, and Brazil [3].

Due to the importance of obtaining energy from wind in the entire area
of renewable energy sources, proper planning of wind farms is essential. In
the world and individual countries, the principles of design, location, con-
struction, and use of wind turbines are regulated in detail. For example, in
Poland, the key legal act concerning the construction and operation of wind
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Figure 1.1: Global installed wind capacity [2].

turbines is a document on investments in wind farms [4]. This document
introduces the principle of the minimum distance of wind farms from resi-
dential buildings and forms of nature conservation. Work on regulations to
liberalise the principles of the location of wind turbines is currently under-
way to amend this document. The proposed changes include, among others,
reducing the minimum distance from buildings to 500 meters. The construc-
tion law [5] also defines the principles of mounting wind turbines directly
on a building, and it is planned to introduce further simplifying solutions.
The location of wind turbines must be consistent with the local spatial de-
velopment plan [6]. In the absence of such a plan, it is necessary to obtain
a decision on development conditions. The construction of a wind turbine
on a separate foundation is treated as a separate construction object, which
requires obtaining appropriate building and use permits.

Wind turbines are energy sources that convert the kinetic energy of the
wind (wind energy) into electrical energy from a renewable source [7]. They
are generally categorised by their axis orientation, horizontal or vertical,
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and by their installation location onshore, turbines on land or offshore, and
turbines at sea. Turbines are composed of mechanical and electrical compo-
nents interlinked [8]. Their main subsystems comprising various components
are the nacelle, rotor, tower, blades, and foundation, as shown in Figure 1.2.
They are tower structures of considerable height and slenderness, subject to
complex aerodynamic loads resulting from the action of the wind. The loads
acting on such structures also change in icing and temperature changes.
Those turbines are complex structural and building systems that require
continuous monitoring to ensure operational efficiency, minimise costs, and
prevent failures. With the rapid advance of the wind energy sector, pro-

Blade

NacelleRotor

Tower

Foundation

Figure 1.2: Wind turbine mains sub-parts (Source: own study).
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duction has increased yearly. This progress drives the construction of ever
larger, more powerful, and technologically advanced wind turbines [9]. How-
ever, as these turbines evolve in scale and complexity, they face significant
challenges. On the one hand, an increase in turbine size and capacity al-
lows for greater efficiency in energy generation. On the other hand, these
advances also bring structural and operational implications [10]. Turbines
are subject to huge mechanical loads and extreme environmental condi-
tions during operation, which has increased the frequency of failures and
maintenance costs [11]. These failures can reduce the reliability of wind tur-
bines and increase unexpected shutdowns and maintenance requirements [9].
Studies indicate that the operating and maintenance costs for onshore and
offshore wind turbines represent 10-15% and 20-35% of total lifetime costs
in wind turbine systems [12]. As a result, the wind energy industries face
a high demand for improvements in the reliability, safety, availability, and
productivity of wind turbine systems [13].

Like any other electromechanical system, wind turbines are subject
to several unforeseen and serious failures that can result in fatal disasters
[18]. With the rapid expansion of wind energy worldwide, there has been a
significant increase in the frequency of accidents at wind farms, with several
reported cases. In recent years, the wind energy sector has experienced
some catastrophic failures, such as the one in the Netherlands in 2013,
where a turbine fired up during maintenance, causing a loss of employee
life (Figure 1.3a). In 2021, a set of nacelles and blades fell 100m from a
Delta 1 wind farm turbine tower in Piaui, Brazil (Figure 1.3b). An accident
occurred in Germany in December 2022 when a wind turbine caught fire
(Figure 1.3c). The same year, with strong winds, a tornado in Texas, USA,
resulted in blade failure in at least three wind turbines (Figure 1.3d).

Failure mechanisms in wind turbines can be classified into three main
categories [19]: mechanical, electrical and environmental causes. Mechanical
failures generally affect components such as the rotor blades, connections,
gearbox, bearings and main shaft, risking the turbine’s performance [20].
In the electrical system, which includes generators, converters and control

1415:53397816



(a) Netherlands (b) Brazil

(c) Germany (d) USA

Figure 1.3: Wind turbine accidents [14, 15, 16, 17].

systems, failures can result from insulation degradation, thermal voltages
and electrical transients, impacting the efficiency and safety of the opera-
tion [21]. Environmental factors such as extreme temperatures, atmospheric
discharges, humidity and corrosion pose significant challenges to turbine re-
liability and service life [22]. Typical failures of wind turbine components
and their causes are described in Table 1.1.
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Table 1.1: Typical failures in wind turbines components and causes [12, 19, 23, 24].

Category Components Causes

Mechanical

Blades and rotors

Corrosion of blades and hub; crack;
reduced stiffness; increased surface
roughness; deformation of the blades;
errors of pitch angle; and imbalance
of rotors, etc.

Gearbox

Imbalance and misalignment of shaft;
damage of shaft, bearing and gear;
broken shaft; high oil temperature;
leaking oil; and poor lubrication, etc.

Bearings Overheating; and premature wear
caused by unpredictable stress, etc.

Main shaft Misalignment; crack; corrosion; and
coupling failure, etc.

Hydraulic Faults Sliding valve blockage; oil leakage, etc.
Mechanical braking
system

Hydraulic failures; and wind speed
exceeding the limit, etc.

Connections system Flexible coupling; fixed connection
(bolts).

Tower

Poor quality control during the
manufacturing process; improper
installation and loading; harsh
environment, etc.

Electrical
Generator

Excessive vibrations of generator;
overheating of generator and bearing;
abnormal noises; insulation damage.

Electrical systems/
devices

Broken buried metal lines; corrosion or
crack of traces; board delamination;
component misalignment; electrical
leaks; cold-solder joints, etc.

Sensors

Malfunction or physical failure of a
sensor; malfunction of hardware or the
communication link; and error of data
processing or communication software.

Environmental

Lightning strikes Cause damage to turbine components,
e.g. rotor blades and electrical systems.

Temperatures
variations

Low/high temperatures can cause
materials and components to expand
or contract, accelerating fatigue.

Humidity
Accelerate corrosion-fatigue; mold;
condensation; freezing; and electrical
failures.

Corrosion

Due to the harsh and highly corrosive
environmental conditions in which
they operate, especially in coastal or
offshore installations.
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(a) (b) (c)

Fractured section of the tower
Fracture of bolts 

connected to the flange

Fractured bolts

(d)

Figure 1.4: Wind turbine mechanical failure events: (a) failure of the pitch drive
system; (b) aerodynamic imbalance due to roughness effects; (c) Icing on the blade
[25]; (d) Flange and bolts of a tower failing on-site [26] (© Creative Commons
Attribution 4.0 International).

Common mechanical failures in wind turbines are related to icing, aero-
dynamic imbalance, flexure coupling drive failure, and connections associ-
ated with bolts, as illustrated in Figure 1.4. Mechanical failure in the pitch
drive system, related to flexible coupling responsible for adjusting the blade
angles, is shown in Fig. 1.4a. This failure type results in a loss of pitch
control. Figure 1.4b shows the aerodynamic imbalance fault, which imposes
changes in the blade surface, modifies the airflow and reduces the turbine’s
aerodynamic efficiency. In the example case, the imbalance is simulated
by applying roughness tape to the blade. Icing is a common event due to
environmental conditions directly affecting the turbine’s mechanical com-
ponents, such as the blades. Figure 1.4c shows ice formation on the blade,
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which compromises aerodynamic performance and causes an operational
imbalance, especially in cold weather conditions.

Wind turbines are made of several components, and it is common to
use bolted joints to connect those components. Large bolts are used at
critical points, such as the tower flange, the blade root, and certain nacelle
connections. However, bolts can become loose during normal operation due
to prolonged operation and exposure to vibration [27, 28]. Excessive wear
of the joints can result in serious failures, including tower collapse, blade
separation or even detachment of the rotor from the nacelle [29]. Failures
of wind turbine blade root bolts were reported at a wind farm in Inner
Mongolia, China. After three years of performance, the turbine blade root
bolts suddenly broke, and the blade fell [30]. Another case is a fracture
of the screws connecting the blade to the hub of the wind turbine rotor
[31]. This failure occurred soon after the start of the wind turbine. The
disaster was preceded by strong winds for a few days, which caused the
tower’s collapse. In 2008, a typhoon hit Taiwan and toppled a wind turbine
tower off the coast of the port of Taichung. A study by Chou and Tu [26]
identified that strong winds, insufficient strength of bolts and poor-quality
control of bolts during construction were the likely causes of the tower’s
collapse (Figure 1.4d).

Monitoring systems, as wind turbines, have become more complex.
It must guarantee greater reliability, efficiency and the ability to identify
faults. However, detecting these problems is challenging as turbines oper-
ate in extreme and variable environments. Sensors can’t always cope well
with these challenges, which makes it essential to use more advanced and
adaptable methods to analyse large volumes of often abnormal data [32]. In
this framework, structural health monitoring of the systems must identify
specific faults that could risk the performance and structural integrity of
turbines, as this is a developing technology that combines sensors and intel-
ligent computer algorithms capable of carrying out structural monitoring in
real-time or in defined time intervals [33]. Since the integrity and safety of
the structures depend on monitoring the occurrence, formation, and prop-
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agation of structural damage, the need to use the SHM technique to detect
early damage in wind turbines is of great importance.

Fault detection methods can be categorised into two approaches [34,
35], the model-based methods and the data-based methods. Among these,
data-based methods have gained prominence because they do not require
precise physical models or advanced knowledge of signal processing [36,
37, 38]. These methods use statistical and signal processing techniques to
identify patterns and create turbine fault indicators [39]. With advances in
artificial intelligence, especially machine learning, it has become possible
to improve these techniques further, enabling the automatic extraction of
relevant information from large volumes of data. The data-based approach
is used in this research, and advances in state-of-the-art technology are
proposed.

The manipulation of the data acquired from the monitoring systems
has advanced and become possible with artificial intelligence tools. Machine
learning algorithms have made significant advances in structural monitor-
ing, achieving higher levels of precision than traditional methods. These
approaches facilitate uncertainty modelling and statistical pattern recog-
nition analysis, supporting decision-making and handling a wider data fu-
sion. However, developing models capable of accurately capturing the var-
ious non-linearities and variabilities of the system still represents an area
of research with great potential to be explored. Current research into fault
detection in turbine components employing machine learning (ML) tech-
niques has advanced over the decade, but it is still ongoing research. Thus,
a significant gap exists in applying ML-based condition assessment meth-
ods incorporating data augmentation, uncertainty quantification, and raw
vibration spectra acquired from structures. An issue in the data-driven ap-
proach SHM is the reduced value of data, missing data, and data sensitivity
towards the damage. Researchers have addressed this issue by mixing exper-
imental data with simulated or synthetic data. However, these sets often do
not accurately represent real-world conditions. Another way to expand the
data set is the use of combined features obtained from the signal. There-
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fore, it typically will repeat the information among the feature extractor
techniques employed in the process.

Aside from the reduced dataset, which can be a factor and potential
problem for the machine learning algorithms to perform fault detection ac-
curately, the data size, processing and computational effort can be a limited
factor. Applied signal differentiation education, or feature extraction, has
been used. Feature extraction is one of the critical steps in the SHM pro-
cess that will influence the whole monitoring process. Various methods have
been used in this process and must be carefully selected depending on the
type of signal and information acquired from the structure. Indeed, during
the monitoring process, the knowledge of the monitoring systems and our
structures associated with the information under search is the main goal
previously defined before using any SHM technique.

1.1 Motivation

Mechanical and structural failures in systems, ranging from aerody-
namic imbalance and icing to bolted joint failures, can severely impact per-
formance, safety, and operational costs. Traditional monitoring techniques
have encountered issues in detecting early-stage faults due to the complex-
ity of turbine dynamics and the harsh environmental conditions in which
they operate. Therefore, the demand for advanced, data-driven monitoring
solutions has intensified. In this context, SHM integrated with ML offers
a transformative approach, enabling real-time fault detection, predictive
maintenance, inspection and structure evaluation, and enhanced operational
efficiency. However, current data-driven SHM methods face challenges such
as limited datasets, high computational costs, and difficulty accurately cap-
turing nonlinear system behaviours. Addressing these limitations requires
innovative methodologies that employ machine learning, data augmenta-
tion, and advanced signal processing techniques to improve fault detection
accuracy and robustness. The study motivation is to bridge these gaps by
advancing state-of-the-art in SHM with ML techniques and enhancing the
resilience and efficiency of systems and structures.
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1.2 Objectives

This research objective1 is to develop a methodology for monitoring
systems and structures from their dynamic response using SHM and ML
techniques. The proposed methodology can detect statistical pattern recog-
nition and quantify damage associated with the uncertainties related to the
process. Henceforth, the specific objectives are:

• Implement an architecture to pre-process the signal, feature extraction
and selection using spectral and statistic methods;

• Develop a virtual sensor integrated into the SHM-ML for data aug-
mentation;

• Design a monitoring route involving a machine learning algorithm for
pattern recognition and detection of damage;

• Design a monitoring route involving a machine learning algorithm for
damage quantification associated with the uncertainty in the process;

• Evaluate the performance of the data-driven SHM-ML methodology
with experimental data tested in laboratory systems and in-situ op-
erational wind turbine.

The proposed methodology’s efficacy and specific objectives are evalu-
ated through three case studies on mechanical faults in wind turbine com-
ponents. In the first case, the SHM-ML framework is applied to detect, clas-
sify, and recognise patterns of torque loosening in bolted joint structures.
To address the challenges posed by the variability of these connections, the
proposed approach integrates both supervised and unsupervised machine
learning algorithms. The methodology relies on experimental data collected
under different test conditions, using raw frequency spectral signals to es-
timate a damage index (DI) that serves as a feature extractor. This DI is
then processed by machine learning algorithms, enabling the approach to

1This research aligns with the 7th Sustainable Development Goal established by the
World Health Organization, which focuses on ensuring access to affordable, reliable, sus-
tainable, and modern energy for all.
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handle measurement variability and uncertainties without requiring prior
modal analyses.

The second case study builds upon the same experimental setup but
enhances the quantification of bolt torque loss by incorporating data aug-
mentation into the SHM-ML methodology. Here, frequency spectra are also
utilised. While many studies rely on simulated or synthetic data, these
datasets often fail to capture real-world conditions accurately. Therefore,
a key objective of this research is to develop an improved condition assess-
ment model based on machine learning to estimate bolt torque loss directly
from raw vibration signal spectra. The proposed approach employs data
augmentation and fusion strategies to enrich the dataset, eliminating the
need for numerical models and relying exclusively on experimental data.

The third application involves monitoring a real wind turbine. This case
study employs an unsupervised clustering algorithm to classify operational
states and identify structural patterns without requiring predefined labels.
A new feature extraction technique was introduced to enhance classification
accuracy, incorporating a relative damage index variation metric. The SHM-
ML methodology has demonstrated effectiveness across various monitoring
scenarios, from simple to complex systems, emerging as a viable technical
solution for integration into real wind turbines. With the increasing demand
for remote structural monitoring solutions, particularly for fault detection
in critical components, the proposed SHM-ML framework facilitates proac-
tive maintenance, minimises downtime, and enhances operational efficiency.
By advancing structural health monitoring and vibration control strategies
for wind turbines, this study contributes to improving the efficiency and
reliability of renewable energy systems, thereby supporting the transition
to cleaner and more sustainable energy sources.

1.3 Organisation of the dissertation

The thesis is organised by presenting an introduction to address the
scope first, followed by a literature review. Then, the subsequent chapters
describe the methodology and results obtained in case studies with the
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application of ML techniques for SHM in wind turbine components and the
conclusions. More specifically, this thesis is structured as follows:

• Chapter 1 presents a general introduction describing the motivation,
objectives, and organisation. The importance of SHM and the role of
ML in this context are discussed.

• Chapter 2 presents a literature review covering the fundamentals
of SHM, methods, and the application of ML in damage detection.
In addition, the chapter discusses different ML approaches and their
relevance to SHM in wind turbine components.

• Chapter 3 describes the methodology used in this research, includ-
ing data processing, feature extraction, ML strategies and uncertainty
quantification. The chapter also details frequency and time domain
analysis with data augmentation techniques to increase the robust-
ness of feature extraction.

• Chapter 4 demonstrates case studies in experimental applications
of ML for SHM. It includes the classification of faults in wind tur-
bine components, detecting loosening torque in bolted structures, and
quantifying damage using ML-based virtual sensors. The results and
discussions highlight the effectiveness of the proposed methods.

• Chapter 5 concludes the dissertation by summarising the main find-
ings, discussing the study’s contributions, and suggesting future re-
search directions.
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2 Literature Review

This research proposes monitoring wind turbines and their components
using the proposed damage assessment with a machine learning process. The
present chapter gathers a literature review of past research and development
related to this doctoral dissertation. It starts with an overview of machine
learning techniques for structural health monitoring, SHM in turbine com-
ponent monitoring and bolted structures. The chapter ends with a general
analysis and the contribution of this research to the state-of-art.

2.1 Structural health monitoring

Structural health monitoring provides significant advantages across var-
ious sectors, providing tools for scheduling maintenance and promoting the
safety and reliability of structures and systems. Hence, continuously as-
sessing structural conditions enables early detection of potential damage
or anomalies, allowing for timely maintenance and repairs [40]. Further-
more, SHM is a proactive action that minimises the risk of catastrophic
failures and extends the lifespan of these structures [41]. Additionally, SHM
enhances maintenance efficiency by identifying specific areas that require
attention, ultimately reducing operational and maintenance costs.

SHM techniques are commonly defined as a strategy for detecting struc-
tural damage through continuous or periodic monitoring [42]. This process
involves data acquisition from sensors embedded in the structure or con-
tactless, extracting damage-related features, and analysing them to assess
potential failures. This approach can help us estimate the monitored sys-
tem’s remaining lifespan [43]. Enabling the transition from offline damage
identification to near real-time online assessment significantly improves the
efficiency and speed of damage evaluation. The tasks of SHM technology
are categorised into five levels, as defined by [44]:

• Level 1- Detection: provide information on the presence of damage.
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• Level 2- Localisation: provide information on the location of the
damage.

• Level 3- Classification: provide information on the type of damage.

• Level 4- Assessment: provide information on the extent of the dam-
age.

• Level 5- Prognosis: provide information on the residual life and
safety of the structure.

Advancing to the next level in the hierarchy depends on the success-
ful completion of the previous ones. It is well known that higher levels of
detail are increasingly challenging to achieve. For instance, prognosis is par-
ticularly complex because it requires a deep understanding of the physics
of damage [45]. Therefore, determining the necessary level of identification
is a critical decision when developing an SHM strategy. The damage in
the monitoring process is defined as any modification or deterioration in a
structure’s integrity, performance, or behaviour that compromises its safety,
functionality, or longevity. This encompasses a range of issues, including
cracks, corrosion, deformations, fatigue, and material degradation, all of
which can weaken structural capacity or threaten stability. Early detection
and monitoring of such damage enable engineers to evaluate its severity and
implement preventive measures to avoid catastrophic failures.

Structural damage detection associated with SHM techniques is broadly
categorised into global and local methods. Vibration-based methods [46] are
typically global, while local methods focus on small-scale damage without
relying on vibration response. Most non-destructive testing and evaluation
techniques, such as ultrasonic testing, acoustic emissions, and infrared ther-
mography, fall under local methods, such as inspecting structural compo-
nents in specific areas. Electro-mechanical impedance-based approaches, for
instance, use piezoelectric patches to detect local damage in small struc-
tures. While local methods aid damage identification, they are insufficient
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for large-scale monitoring. A comprehensive SHM system should integrate
local and global techniques for a complete structural assessment [46].

Vibration-based methods have been extensively researched for decades,
assuming time, frequency, and modal analyses to identify, locate, and evalu-
ate damage in engineering structures. Numerous algorithms have been devel-
oped across civil, mechanical, and aerospace fields. Global damage detection
methods analyse structural vibration responses using strategically placed
accelerometers, with collected data processed to detect damage. While qual-
itative techniques date back to the 1800s, quantitative methods became
viable in the 1980s due to advancements in computing and sensing tech-
nologies [46]. Compared to local approaches, the vibration-based method
requires fewer sensors, does not rely on predefined damage locations, and
employs portable equipment. These methods are broadly categorised into
nonparametric and parametric approaches, which are further examined in
the following sections. Hence, the fundamental idea behind vibration-based
damage identification is that damage-induced changes in physical properties
such as mass, damping and stiffness can cause detectable changes in modal
properties such as natural frequencies, modal damping and mode shapes
[47]. Thus, as an indicator of stiffness reduction, shifts in natural frequencies
and variations in modal parameters are commonly used in vibration-based
structural health monitoring systems to assess structural integrity.

The advancements in reliable and low-cost sensors capable of measuring
various structural responses (e.g., accelerations, displacements, strains, tem-
peratures, and loads) have driven significant scientific and practical progress
in SHM application over the past four decades, enabling the processing of
raw measurement data into meaningful structural health indicators. How-
ever, despite these advancements, SHM remains largely confined to research
and has not yet achieved widespread real-world implementation. Address-
ing this gap requires fast, on-demand monitoring solutions that leverage
machine learning techniques to enhance real-time data processing, auto-
mate damage detection, and improve the scalability and efficiency of the
monitoring methods in practical applications. Hence, with the integration
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of artificial intelligence in the price, we can increase the value of informa-
tion in vibration-based SHM. The value of information further highlights
the advantage gained from utilising vibration data for early damage de-
tection, risk mitigation, cost optimisation, informed decision-making, and
improved uncertainty quantification, thereby enhancing overall structural
safety and maintenance efficiency [48, 49].

2.2 Machine learning for structural health monitoring

Traditionally, SHM relied on physics-based approaches, which were lim-
ited by their applicability to simple structures and controlled environments.
The advent of machine learning has leveraged the SHM approach by pro-
viding advanced tools for data analysis and damage detection, enabling
more robust and comprehensive monitoring systems [50]. Conventional SHM
methods faced difficulties such as incomplete monitoring data, uncertainties
in structural conditions, and complex environmental factors affecting the
parameters of the feature, e.g. modal properties and temporal responses.
These limitations required the development of novel methodologies that
could exploit the vast amounts of data generated by modern monitoring
systems [50, 51]. Integrating the Internet of Things (IoT) and big data ana-
lytics has recently significantly enhanced SHM systems. These technologies
facilitate collecting and processing large datasets, enabling near real-time
damage assessment and decision-making [52, 53]. Hence, the evolution of
the application of ML in SHM assessed early challenges and progress in
integrating IoT and Big Data.

Indeed, machine learning techniques significantly enhanced the effi-
ciency and accuracy of SHM systems by automating data analysis and
improving damage detection [54, 52, 55]. These algorithms process large
volumes of vibration data, identifying patterns and anomalies that may
indicate structural deterioration. Unlike traditional methods that rely on
manual interpretation, machine learning enables real-time monitoring and
early issue detection by learning from historical and newly acquired data.
Beyond vibration analysis, ML can integrate data from various sources,
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such as temperature and moisture sensors, and visual inputs from cameras
or drones. This multidimensional approach improves anomaly detection and
enhances predictive capabilities. Additionally, ML algorithms continuously
refine their performance, adapting to new data and increasing the accuracy
and efficiency of SHM systems over time. These advancements contribute
to early intervention, reducing the risk of structural failures.

ML techniques, particularly data-driven methods, have become essen-
tial in SHM for analysing complex structures where physical modelling is
challenging. These methods include clustering, regression, and classification
algorithms that can efficiently detect and predict damage in structures such
as bridges, buildings, wind turbines, machinery, and aeroplanes, among oth-
ers [52, 54]. Further, Deep learning (DL) has emerged as a powerful tool
in SHM, offering advanced capabilities for vibration-based and vision-based
monitoring. DL methods, such as deep neural networks and transfer learn-
ing, have been successfully applied to enhance the accuracy and reliability
of SHM systems [56, 57].

Along with progress in the field of SHM integrated to ML, one still
faces significant challenges in applying ML and DL to SHM, such as the
lack of comprehensive sensor data for different damage scenarios, affect-
ing ML models’ robustness and generalizability. Physics-informed learning,
which integrates domain knowledge into the ML process, is proposed as a so-
lution to improve model performance [51]. The solution of sensor fusion and
data augmentation [58] has shown promising solutions, but ongoing research
remains. Overall, the integration of ML into SHM represents a significant
advancement in the field, addressing many of the limitations of traditional
methods. As technology continues to evolve, the combination of ML with
IoT, big data, and emerging technologies will likely lead to even more so-
phisticated and effective SHM systems, ensuring the safety and improving
the lifespan of the structures and systems.
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2.2.1 Statistical pattern recognition

Structural health monitoring with machine learning and statistical pat-
tern recognition (SPR) are closely related, as SHM integrated with ML relies
on SPR principles for damage detection, classification, and prognosis [59].
The SPR encompasses various definitions and approaches. It includes all
stages of an investigation, from problem formulation and data collection to
analysis, classification, evaluation, and interpretation [60], and is further de-
fined as the automatic discovery of regularities in data through algorithms
that classify data into different categories [59]. In a general context, SPR is
a methodology for identifying patterns in data using statistical techniques
involving feature extraction, modelling relationships between features, and
probabilistic decision-making.

Figure 2.1 is a scheme of the SPR process [43], which starts with a
data acquisition system (e.g., sensors, cameras, etc.) responsible for cap-
turing physical information and translating it into a measured signal. A
pre-processing process eliminates noise or distortions, followed by a feature
extractor (or attribute). Feature is the information collected from the sig-
nals that can represent the information acquired from the monitored system
in a reduced or compact format. It is commonly applied to reduce data to
attributes, properties, or characteristics. The next step is classifying and
clustering these features to achieve the pattern recognition objective.

Figure 2.1: Statistic pattern recognition process (Source: own study).

2930:74488553



In summary, SPR aims to classify objects into different categories or
classes by analysing the characteristics presented by the features. In the
context of damage identification, it seeks to detect structural changes by
comparing the damaged state to the undamaged state. This process begins
with collecting data from the monitored structure and ends with identifying
damage to assess the structure’s current condition [61]. Data extraction is
generally categorised into two main approaches, the physics-based approach
and the data-driven approach [55, 62]. The physics-based approach assesses
structural integrity by updating a model grounded in physical principles,
such as the finite element model (FEM), aiming to minimise discrepancies
between model predictions and measured data. This method can provide an
accurate and calibrated model for damage prediction. However, simplifica-
tions and omissions in the model may introduce errors, affecting parameter
estimation, damage detection, and forecasts of structural behaviour. Data-
driven approaches leverage pattern recognition to detect damage, determine
its location, and assess its severity based only on structural response data
[63]. An advantage of this approach is that it eliminates the need for complex
numerical model development and validation while adapting to uncertain-
ties caused by measurement variability. However, a significant challenge in
data-driven SHM is obtaining sufficient accurately labelled training data
to develop a reliable and generalizable statistical model [64]. In particular,
damage detection in data-driven SHM is a supervised learning problem,
where potential damage locations serve as target class labels for a machine
learning classifier. This learning process requires training data from both
undamaged and damaged conditions.

In the context of pattern recognition, Figueiredo and Brownjohn [61]
recently published a review of the evolution of the SPR paradigm applied
in bridge monitoring covering the past three decades. Their study high-
lighted key developments in detection technology, data analysis, and emerg-
ing trends to foster more coordinated and interdisciplinary research. The
authors also addressed challenges in transitioning SHM from research to
practical application, particularly in obtaining reliable global damage as-
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sessments and advancing damage identification levels, including diagnosis
(location, type, and severity) and prognosis. Similarly, Sen and Nagaraja-
iah [65] reviewed statistical learning techniques for SHM and damage detec-
tion, discussing the role of supervised and unsupervised learning algorithms.
They concluded that statistical learning algorithms enhance the robustness
and efficiency of SHM systems and reduce computational effort compared
to model-based approaches, which often require high-fidelity simulations.
This paves the way for developing real-time, online SHM systems capable
of autonomous damage detection with minimal human intervention.

Autoregressive models have been employed to solve the SPR paradigm.
Zhang et al. [66] reviewed linear and nonlinear structural identification
methods that apply support vector regression (SVR) for pattern recognition.
They presented three SVR-based approaches utilising ARMA time series,
high-order AR models, and substructuring strategies to identify linear struc-
tural parameters from vibration data. The study also discussed SVR coeffi-
cient selection and incremental training algorithms. Numerical evaluations
confirmed the accuracy of SVR-based methods in identifying structural pa-
rameters, highlighting their potential for SHM applications. Later, Gui et
al.[67] investigated statistical pattern recognition methods for SHM through
experiments on a supported steel beam and a complex steel grid structure.
Their approach combined time series modelling, specifically autoregressive
(AR) models, with outlier detection algorithms based on Mahalanobis dis-
tance to identify structural changes. Similarly, Entezami et al.[68] proposed
an approach to efficiently handle big data in structural integrity moni-
toring using the SPR. Feature extraction was performed through autore-
gressive moving average (ARMA) modelling, and a novel partition-based
Kullback-Leibler divergence nearest neighbour (PKLD-NN) method was
introduced for damage detection. The proposed method was validated us-
ing high-dimensional experimental data from the Tianjin Yonghe Bridge,
demonstrating its effectiveness in SHM applications.

Herrera-Iriarte et al. [69] explored a methodology for SHM based on
recognising deformation field patterns using sensors capable of measuring
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deformations at discrete points and machine learning techniques to detect
structural damage. In this study, deformation data from fibre optic sen-
sors (FOS), specifically fibre Bragg gratings (FBG), acquired through two
experiments were used: an aluminium beam with 32 FBGs and a CFRP
beam with 20 FBGs, which serves as the main wing of the structure of an
unmanned aerial vehicle (UAV). In the experiments presented, the beams
were equipped with different numbers of sensors, which were removed one by
one to analyse the sensitivity of the PCA-based damage detection method-
ology to changes in the number of sensors. The results show that only a
few sensors contribute significantly to the methodology’s performance, and
these sensors are validated as those located close to the analysed damage
condition.

Machine learning algorithms have been employed in SPR techniques for
structural damage detection. Trendafilova and Heylen [70] explored using
artificial intelligence techniques for damage detection and localisation in
structures. The structure was divided into substructures in their approach,
and pattern recognition techniques were applied to identify the damaged
substructure. Frequency response functions (FRFs) were used for a defined
number of degrees of freedom and frequencies, serving as the foundation for
the detection process. A mapping was established between the feature space
extracted from the FRFs and the space defined by the dynamic response
of the structure in the frequency domain. Based on this mapping, standard
vectors and samples representing different damage classes were obtained.
Finally, a computer code (classifier) was developed to utilise the pattern
recognition information for damage localisation within the structure.

Qiao et al. [71] employed a signal-based SPR procedure for struc-
tural damage detection with a limited number of input/output signals. The
method involves extracting and selecting sensitive features from the struc-
ture’s response, creating a unique pattern for each specific damage sce-
nario, and comparing the unknown damage pattern with a known database
to identify the damage’s location and severity. In the study, two trans-
formation algorithms, Continuous Wavelet Transform (CWT) and Wavelet
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Packet Transform (WPT), were separately implemented for feature extrac-
tion, while three pattern matching algorithms—correlation, least squares
distance, and Cosh spectral distance—were used for pattern recognition.
Experimental studies conducted on a simple three-storey steel structure
showed that the signal characteristics for different damage scenarios could
be uniquely identified, with the correlation algorithm providing the best per-
formance in recognising the unknown damage pattern. This method is not
only effective for damage location identification but also has the potential to
detect damage type, making it suitable for online structural health monitor-
ing applications. Later, in an experimental study, Shan et al. [72] proposed
a method for detecting structural damage in a continuous girder railway
bridge by combining a step-by-step damage detection approach with statis-
tical pattern recognition, the identification process covered early warning of
damage, localisation of the damage, and determining its extent. The Sup-
port Vector Machine (SVM) multiclass classification algorithm was used for
damage location identification, while the Support Vector Regression (SVR)
algorithm was employed to assess the severity of the damage. The results
demonstrated that the proposed method successfully and accurately iden-
tified the damage’s location and extent with high accuracy.

Deep learning algorithms have also been employed in the SPR process.
Goswami and Bhattacharya [73] proposed an SPR-based damage detection
scheme for aerospace vehicle structures. This method involves collecting
mechanical vibration signals from plate-like structures using displacement
sensors, followed by noise removal and feature extraction through Wavelet
Transform-based signal processing techniques. A set of neural networks is
then trained to classify and identify the damage present in the structure.
While the case studies showed promising results for classifying individual
damages, identifying multiple damages in the same structure revealed a
decline in success rates. To enhance these results, the authors developed
a sensor positioning strategy that significantly improved the accuracy of
detecting multiple damages.

Perafán-López and Sierra-Pérez [40] presented a pattern recognition
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methodology for clustering operating conditions in a structural sample us-
ing the Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm in the context of SHM. This methodology was validated
using data from an experiment with 32 fibre optic Bragg sensors attached
to an aluminium cantilever beam subjected to cyclic bending loads at 13
different operating conditions (inclination angles). Additionally, the com-
putational cost and accuracy of the machine learning pipeline, FA+GA-
DBSCAN (which combines factor analysis for dimensionality reduction and
a genetic algorithm for automatic DBSCAN parameter selection), were eval-
uated. The results demonstrated good performance, detecting 12 out of the
13 operating conditions with an overall accuracy exceeding 90%. Li et al. [74]
proposed a new Generalised Automatic Encoder (NGAE) integrated with a
statistical pattern recognition approach, utilising cepstral power coefficients
of structural acceleration responses as damage-sensitive features (DSFs) for
structural damage assessment. The method was validated through numerical
simulations and experimental data, demonstrating superior performance to
traditional Auto-Encoder (TAE) and Principal Component Analysis (PCA)
methods.

In recent years, the application of SHM and ML has experienced vast
growth in methods and applications aimed at improving the reliability and
maintenance of these systems. In this study, we focus our SHM-ML tech-
nique developments and tests on detecting and diagnosing faults in wind
turbine components, such as blades and rotors, and coupling mechanisms,
such as flexible coupling components and fixed bolted joints.

2.3 Application of SHM integrated with ML in wind turbine
components

The wind energy industry faces the challenge of ensuring the efficient
and safe operation of wind turbines subjected to extreme mechanical loads
and harsh environmental conditions during operation. In this regard, dam-
age detection methodologies play a key role, as they make it possible to
identify structural problems before they become critical, guaranteeing the
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integrity and longevity of these structures. To reduce costs and improve
operational efficiency, it is vital to use a reliable SHM methodology capa-
ble of detecting structural defects. Thus, the use of SHM associated with
ML has been successful in several applications in monitoring wind turbines
[28, 75, 76, 77], allowing precise and automated procedures to be devel-
oped. Among the various techniques available, systems based on vibration
analysis show great potential for structural monitoring and fault diagnosis
[28, 75, 76, 77].

The wind turbine is a sophisticated mechanical-electrical system. A
turbine’s main mechanical components and structures that have been mon-
itored include the blades, main bearing, main shaft, gearbox, nacelle, tower,
foundation, yaw system and bolted systems. The common failure types and
cases of the main components have been introduced in Table 1.1. SHMmeth-
ods applied to wind turbines were investigated and summarised. Thus, wind
turbine component fault detection using the proposed SHM-ML process is
the main focus of this study, specifically in damage conditions associated
with the blade, rotor and flexible and fixed coupling.

2.3.1 Blade monitoring

SHM integrated with ML applied to wind turbine blades have been
extensively studied by several researchers. In one of the earlier studies, [78]
explored machine learning techniques for monitoring turbine blades using
vibration data, particularly Frequency Response Function (FRF) measure-
ments. The research emphasised low-level fault estimation to determine the
presence or absence of damage using a Multilayer Perceptron (MLP) and
a novel approach to self-association using Radial Basis Function (RBF)
networks. Building on this, [79] investigated new turbine blade fault detec-
tion using experimental vibration analysis and machine learning techniques.
The study explored Nonlinear Neural Networks, including Auto-Associative
Neural Networks (AANNs) and Radial Basis Function (RBF) network mod-
els. In [80], the authors examined machine learning algorithms based on
Auto-Associative Artificial Neural Networks (AANNs), proposing a stan-
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dard ANN-based AANN and a novel approach for auto-association using
RBF networks, and in [81], it is discussed advancements in SHM and con-
dition monitoring of wind turbines, focusing on damage detection through
data-driven vibration analysis. The study presented existing technologies
for turbine blades, employing a pattern recognition and machine learning
approach, such as ANNs and Gaussian processes, alongside SCADA data.

In [82], the authors presented an algorithmic classification of vibration
signals for assessing the condition of wind turbine blades considering five
faults (blade crack, erosion, loose hub-blade connection, pitch angle twist
and blade bend) for the diagnosis of wind turbine blade faults. ML tech-
niques were used for feature extraction, selection, and classification based
on a decision tree algorithm. The functional trees algorithm is suggested for
diagnosing wind turbine blade faults. In the work by [83], a three-layer struc-
tural integrity monitoring framework is employed on experimental data from
a 34 m rotor blade for damage and icing detection. Modal parameters iden-
tifying the system and other damage characteristics, also called condition
parameters, are presented and compared with each other. The focus of the
study was to investigate the effect of varying environmental and operating
conditions (EOCs) on structural dynamics and to explore the contribution
of unsupervised ML by data clustering to increasing detection performance.
It is shown that detection performance in the case of data clustering ac-
cording to the equivalent damage load applied is higher than without data
clustering. Subsequently, [84] used twelve rule-based feature classifiers us-
ing WEKA for wind turbine blade fault diagnosis, considering the following
methods: Conjunctive Rule (CR), Decision Table, Decision Table and Naive
Bayes hybrid classifier (DTNB), JAVA implemented repeated incremental
pruning to produce error reduction (JRip), Non-Nested generalised exem-
plars (NNge), One Rule (OneR), Projective Adaptive Resonance Theory
(PART), Ripple down rule learner (Ridor), Zero Rule (ZeroR), Fuzzy Un-
ordered Rule Induction Algorithm (FURIA), modified learnable evolution
model (MODLEM) and classifier Ordinal Learning Method (OLM).

Chandrasekhar et al. [85] proposed a diagnostic methodology for oper-
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ational wind turbine blades using Gaussian Processes (GPs) for predictive
purposes, and the residuals between the actual signals and the predicted sig-
nals can be used as an informative indicator of damage. The proposed SHM
methodology can identify when blades begin to behave differently from each
other over time. More recently, [86] contributed to this field by focusing on
detecting structural faults in turbine blades by analysing tower vibrations.
The study developed a Convolutional Neural Network (CNN) classifier to
differentiate between tower vibrations collected under healthy and faulty
blade conditions. In [87], the authors present the structure of signal col-
lection, feature extraction and classification techniques for predicting blade
failures. Classifier models such as Naive Bayes (NB), multilayer perceptron
(MLP), linear support vector machine (linear SVM), single depth convolu-
tional neural network (1DCNN), bagging, random forest (RF), XGBoosts,
and decision tree (DT) were used, and the results were compared according
to their parameters to propose a better fault diagnosis model.

2.3.2 Foundation and tower monitoring

Wind turbines rely on various support structures, including foundations
and towers, which are also susceptible to damage [3]. SHM applied to these
components provides crucial insights into their condition, facilitates main-
tenance, and helps prevent catastrophic failures. Vidal et al. [88] propose a
methodology for diagnosing structural damage in jacket-type foundations,
specifically investigating crack damage at four locations. Their approach
employs a damage detection and localisation method, where the latter is
treated as a classification problem, using k-NN and SVM on vibration re-
sponse data from accelerometers. Similarly, Jersson et al. [89] develop an
SHM methodology that integrates data pre-processing, principal compo-
nent analysis (PCA) for dimensionality reduction and feature extraction,
and XGBoost-based classification for damage detection in offshore wind
turbine support structures. Their method was validated on a small-scale
model with five structural states: an intact structure and a 5mm crack at
four locations. Additionally, Liying [90] explores tower failures, introducing
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a K-means fault clustering classification model optimised through a dynamic
weight algorithm.

Throughout their operational life, wind turbines are continuously ex-
posed to multiple hazards from various load types, including torsional vibra-
tion and tower side-to-side and fore-aft bending. These factors can signifi-
cantly impact their long-term structural health and performance [3]. Hoxha
et al. [91] propose an SHM strategy that relies solely on vibration response,
employing machine learning methods for damage diagnosis. Their study
utilises KNN, quadratic SVM, and Gaussian SVM for classification. Simi-
larly, Nguyen et al. [92] investigate wind turbine tower damage assessment
through vibration-based artificial neural networks (ANNs). Their approach
uses modal parameters, such as mode shapes and frequencies, as inputs,
with element stiffness indices as outputs. A FE of a real wind turbine tower
serves as the test structure, and the trained ANNs are then applied to detect
damaged elements and assess severity levels.

2.3.3 Gearbox and rotor monitoring

The nacelle of a wind turbine accommodates the drivetrain system,
which includes the gearbox, rotor, main bearing, main shaft, yaw system,
hub, and generator. Drivetrain component failures are among the most crit-
ical challenges throughout a wind turbine’s operational lifespan. These fail-
ures vary in nature and are often exacerbated by prolonged exposure to
harsh conditions, such as heavy loads, wind gusts, and dust-induced corro-
sion. Common issues, including rotor imbalance, rotor icing, misalignment,
structural damage, bearing and gear failures, and generator breakdowns,
are typically associated with excessive vibration, oil leakage, elevated oil
temperatures, inadequate lubrication, and impact forces[3]. Analysing wind
turbine gearbox vibrations for SHM is explored in [93], where a neuromor-
phic machine learning model is developed to analyse time-series accelerom-
eter data for fault detection. A neuromorphic neural network was trained
on the back to classify accelerometer data from both healthy and dam-
aged gearboxes. Similarly, Praveen et al. [94] propose a simplified signal
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segmentation technique that aligns non-stationary vibration signals with
specific speed stages and gearbox components. This technique is validated
using machine learning algorithms, including Decision Tree, Support Vector
Machine, and Deep Neural Network.

Elforjani et al. [95] investigate fault classification and detection in wind
turbine gearboxes using ANNs, Decision Trees (DTs), Gaussian Processes
(GPs), Mixture Discriminant Analysis (MDA), and Support Vector Ma-
chines (SVMs). Their study first extracts twelve statistical features from
the vibration dataset, followed by Principal Component Analysis (PCA)
to enhance data visualisation and reduce dimensionality, improving classi-
fication accuracy. Gao et al. [96] propose a linear discriminant diagnostic
method based on convolutional neural networks (CNNs) for detecting and
diagnosing coexisting mechanical faults in operational wind turbine bearings
and gearboxes using vibration signals.

Vives et al. [97] apply KNN and SVM techniques for diagnosing and pre-
venting faults in wind turbine bearings through vibration analysis, achiev-
ing high predictive accuracy. In a related study, Vives et al. [98] implement
SVM and deep learning for fault monitoring and diagnosis. Abdelrahman et
al. [99] introduce a combined vibration analysis and CNN-based approach
(Cyclostationary-based CNN and Kurtogram-based CNN) for detecting and
classifying faults in wind turbine gearboxes. Lastly, Angela et al. [100] in-
tegrate autonomous data-driven learning of fault signatures with integrity
state classification using CNNs and isolation forests.

2.3.4 Flexible and fixed assembly coupling

Flexible coupling failure in wind turbines is a critical issue affecting the
reliability and efficiency of wind energy systems. This topic encompasses the
study of dynamic interactions between various components of wind turbines,
particularly focusing on the flexible couplings that connect the gearbox and
generator. These couplings are essential for accommodating misalignments
and reducing stress on the turbine components. Flexible couplings in wind
turbines often fail due to misalignment and the resulting reaction loads.
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Joint kinematics, metal disk pack deformations, and axial and angular shaft
misalignments influence these loads. Such misalignments can lead to early,
unplanned bearing failures in the gearbox and generator high-speed shafts,
significantly reducing their lifespan [101].

The dynamics of rigid-flexible coupling in wind turbines are complex
and involve interactions between various structural components. Studies
have shown that the dynamic response of wind turbine components, such
as blades and towers, is significantly affected by external forces like wind
loads and gravity, leading to deformation and vibration. These dynamics are
crucial for understanding the stability and reliability of wind turbines [102].
Understanding and addressing flexible coupling failures are vital for improv-
ing the reliability and efficiency of wind turbines. By accurately modelling
the dynamic responses and optimising the design of flexible couplings, the
operational lifespan of wind turbine components can be extended, reducing
downtime and maintenance costs [101, 103, 104]. These insights are crucial
for developing and deploying wind energy technologies.

Another important coupling mechanism used in wind turbines is bolts.
It is crucial in wind turbine towers, connecting all tower sections and blade
root connections. However, bolt looseness is a common deficiency and is
prone to occur due to long-term vibrations, fatigue, corrosion, bolt relax-
ation and incorrect bolt pre-tensioning procedures. These failures can lead
to the collapse of wind turbine towers in severe cases, which makes bolt
looseness a major concern. Damage detection methods applied to bolted
joints have been studied, focusing mainly on two components/structures,
the tower flange [105, 106, 107, 108, 109, 110, 111, 28, 112, 113] and blade
root connections [114, 115, 116, 117, 118, 119]. Machine learning techniques
were investigated for detecting bolt loosening in wind turbines based on vi-
bration analysis in [120]. They developed a FEM of the bolted connection,
tower flange, to study the bolt loosening process under transverse vibration
conditions. A prediction model for bolt loosening based on machine learn-
ing Gaussian process regression (GPR) was developed to obtain confidence
intervals for the preload variation in a probabilistic sense with vibration cy-
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cles in different working conditions. The result shows that, under the action
of transverse vibration loading, the magnitude of the vibration load is the
main factor affecting loosening, and the greater the magnitude of the load,
the greater the probability of loosening occurring.

2.3.5 Bolted structures monitoring

Machines and structures are assembled and fixed together from indi-
vidual parts, which can be joined through mechanical, chemical, or physical
means [121]. There are various fastening techniques, some of which are per-
manent, while others allow joints to be repeatedly assembled and disassem-
bled [122]. Mechanical joining involves connecting two or more engineering
components (or elements) to form a functional unit. This process is achieved
using devices called fasteners, which result in mechanical fixing [123]. Var-
ious types of fasteners, such as screws, nails, bolts, rivets, and others, are
used to secure the parts of an assembly. The joint is typically formed by an
ordered matrix of fixing points or lines, creating a discontinuity in the struc-
ture. There are many types of joints, some designed for specific applications
and others, like overlap joints, being more common. Mechanical joints are
crucial and often critical to any assembly or engineering structure, as they
rigidly connect substructures and enhance the dynamics of the assembled
system [124].

Bolted joints are widely used in engineering structures, such as civil
and mechanical structures, due to their simplicity of design, ease of assem-
bly and disassembly, reliability, high load capacity and relatively low cost.
They consist of a bolt, a nut, two contact parts and sometimes washers,
as illustrated in Figure 2.2. The tightening force, provided by the tension
in the bolt, connects the components and applies a preload or pre-tension,
placing them in compression to increase resistance to static or cyclic loads.
Tightening is important to ensure the proper functioning of the joint and
the force required to hold it together. The tightening process guarantees
the quality and integrity of bolted joints. However, maintaining tightening
accuracy is a challenge, as there is a degree of uncertainty in the preload
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Figure 2.2: Schematic representation of bolted joints considering the principal
elements: structure, bolt, nut, and torque force (Source: own study).

on each joint [125]. In addition, it is difficult to tighten several bolts simul-
taneously due to the limited number of devices available, and tightening is
done alternately in many passes to approximate the design load [126]. It
is important to ensure an adequate tightening force for the bolt; in many
cases, inadequate force can cause damage to the structure due to looseness,
while excessive force can also impose stresses on the bolt, which reduces
its efficiency. Therefore, it is crucial to accurately measure the bolt tension
and detect and quantify the degree of tightness of the joint.

Failure of bolted joints

Although bolted joints offer advantages, it is important to note that
they can fail during operation. In some situations, failures in bolted joints
have serious consequences and are safety-critical. Fatigue, stress concentra-
tion, cracking, corrosion, high temperatures and mechanical failure during
assembly are the main causes of bolt failure. Too tight bolts can contribute
to bolted joint failure, but the event is uncommon. Excessive loads can
stimulate stress corrosion cracks, crushing or damaging surfaces [125]. Bolt
loosening is a form of damage or failure in structures and is the most com-
mon and relevant problem in bolted joints [126]. Loosening can be defined
as a gradual loss of preload after the tightening process has been completed,
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which over time is inevitable, making the fastening unstable due to exter-
nal dynamic loads such as impact, vibration and thermal loads [127]. Early
detection is, therefore, essential to ensure the safety of the connection.

Vibration is widely recognised as the primary cause of bolt loosening
[128]. When a joint is subjected to unintended movement, the preload can
diminish or be entirely lost, leading to mechanical failure [129]. Additionally,
insufficient preload can result in fatigue fracture of the bolt under vibra-
tional stress. Research into vibration-induced loosening has been conducted
for decades. A recent review study by Gong et al. [130] examines the factors
that initiate rotational loosening, including axial, transverse, torsional, and
bending vibration loads. The authors suggest that their work will signif-
icantly advance the understanding of the subject and serve as a valuable
resource for engineers. Bickford and Oliver [131] also explore vibration loos-
ening in their book.

Experimental studies presented in [132] used a specialised test machine
to demonstrate that transverse vibrations have more detrimental effects on
bolt loosening than axial vibrations. Similarly, Pai and Hess [133, 134] con-
ducted experimental studies on screw loosening under dynamic loads. Their
findings revealed that fasteners can loosen at lower loads than anticipated
due to localised sliding on the contact surfaces. Later, the authors [134]
developed a three-dimensional FEM to simulate loosening. This model ac-
curately represented the characteristics observed in the experimental data,
including the key factors contributing to loosening. Chen, Gao, and Guan
[135] proposed a FEM using a hexahedral mesh, integrating both the tight-
ening and loosening processes to analyse the effects of different fastening
media.

Machine learning applied in bolted joints monitoring

Over the years, significant advancements have been made in detect-
ing loosening in bolted structures [136, 126]. These techniques are in situ
inspection, computational vision, and sensor-based techniques. In-situ in-
spection techniques, such as using a torque wrench and hammer, can be
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visual or mechanical [127, 129, 137]. Digital cameras or images are used in
computer vision-based techniques, while the vibration-based method, wave
propagation [138, 139, 140], acoustoelastic effect-based method, piezoelec-
tric sensor-based methods, and impedance-based method are used in sensor-
based techniques [129].

ML algorithms have recently been utilised to detect and monitor bolt
torque loosening. Machine learning is a set of methods that can automat-
ically detect patterns in known problem data, which can then be used to
develop predictive models and carry out decision-making in uncertain con-
ditions [141]. The ML technique learns from the available data and obtains
a model that can make accurate predictions [142]. These algorithms are
categorised into supervised and unsupervised classification learning tech-
niques and regression algorithms. The supervised learning technique creates
a model from a set of labelled training data using previously known input
and output values, and it is subdivided into classification and regression
problems. Using multiclass supervised machine learning algorithms, Sousa
et al. [143] accurately assess the damage of a beam reinforced by masses
from its spectral response. The authors used ML to classify the beam’s
damage, where the methodology involves experimental measuring and nu-
merical calculation of the dynamic features, such as natural frequency and
frequency response function, to construct two DIs. In contrast, the unsuper-
vised learning approach does not require target class labels in the training
data[141]. The regression algorithms help in defining the relationship be-
tween labels and data points. An overview of the literature related to the
work is presented here to explain the application of the ML technique in
detecting looseness in bolted joints.

In situ inspection techniques to monitor torque loosening have been
explored by Zhou et al. [144], where the authors describe a study that used
percussive methods and machine learning to detect loosening in bolts. The
experiment was conducted on a four-bolt steel beam-column joint, where
laser Doppler vibrometry was used to capture the vibration information of
the test bolt, while microphones collected acoustic sounds generated by an
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automatic hammer. The authors then transformed the reconstructed sound
database into spectrograms and trained a 2D-CNN to identify bolts’ loos-
ening conditions. Wang and Song [145] presented a novel one-dimensional
training interference capsule neural network (1D-TICapsNet) to process and
classify percussion-induced sound signals to detect bolt early looseness in
two steel pieces tightened using four bolts. They also employed in [146] the
multifractal analysis and joint mutual information maximisation method to
extract feature sets and detect bolt loosening using the gradient boosting
decision tree (GBDT) algorithm. Tran et al. [147] investigated the applica-
tion of a deep convolutional neural network (DCNN) algorithm to detect
and estimate looseness in bolted joints using a laser ultrasound technique.
Zang et al. [148] presented a method of detecting screw loosening in iron
plates based on audio classification using SVM. Kong et al. [149] proposed
a new approach to identifying bolt clearance levels in a twelve-bolt subsea
flange using an ML model with the decision tree method, similar to the
percussive diagnostic techniques used in clinical examinations.

Computer vision-based machine learning techniques to torque loosening
were proposed by Gong [130]. In [150], the authors use a combination of deep
learning algorithms and geometric image theory for detecting loosened bolts
in a steel pedestal through vision-based bolt loosening. The method uses a
faster regional convolutional neural network (Faster-RCNN) and a waterfall
pyramid network (CPN) algorithm. Zhang has conducted similar research
[151] and Yu [152] using the Faster R-CNN and single-shot multibox detec-
tor (SSD) algorithm, respectively, for detecting bolt loosening angles. Pham
et al. [153] used synthetic images of bolts generated from a graphical model
to train a deep learning model based on the Region-based Convolutional
Neural Network (R-CNN) algorithm for detecting loose bolts. Ramana et
al. [154] used machine learning techniques, including the Viola-Jones algo-
rithm and SVM, to detect loosened bolts on a steel I-section. Similarly,
Chan et al. [155] used the Hough transform and SVM to build a classifier
for detecting loosened bolts.

Several investigations have employed various techniques and methods
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to detect anomalies and identify bolt loosening in engineering structures.
For instance, Razi et al.[156] have utilised sensor-based techniques, ML
based on wave propagation, and modal methods. In the study by Ziaja et
al.[157], elastic wave propagation was employed to detect anomalies in the
prestressed connections of engineering structures, utilising a combination of
Artificial Neural Networks (ANN). Eraliev et al.[127] detected and identified
loosening bolts in a multi-bolt structure using seven ML algorithms, namely
Random Forest, Bagged Trees, Decision Tree, k-neighbour, Linear Discrim-
inant Analysis, SVM, and XGBoost. The author utilised the Short-Time
Fourier Transform (STFT) method for feature extraction from acquired vi-
bration data. Miguel et al.[158] observed the loss of tightening torque in
bolted joints by employing modal parameters. Teloli et al. [159] utilised two
probabilistic ML methods, namely the Gaussian mixture model (GMM) for
damage detection and Gaussian process regression (GPR) for quantifying
loosening torque in lap-joint structures. Chen et al. [135] proposed a diag-
nostic method for detecting looseness in fan foundation bolts based on the
mixed domain characteristics of excitation response and multiple learning.
The study employed the K-weight nearest neighbour classifier (WKNNC) to
identify slacks. Zhuang et al. [160] employed the acoustoelastic effect-based
method along with several ML algorithms, such as the recurrent neural net-
work LSTM, one-dimensional WideResnet40, one-dimensional Densenet121,
XGBOOST tree classification model, LightGBM, and the SAX-VSM algo-
rithm. Wang et al.[161, 162] proposed the Siamese Double-path CapsNet
(SD-CapsNet) and the Genetic Algorithm-based Least Square Support Vec-
tor Machine (GA-based LSSVM) for bolt loosening detection, using piezo-
electric sensor-based methods. Zhou et al. [163] applied an impedance-based
method using the Graph convolutional networks (GCN) model in another
approach. Hence, these studies have utilised various ML algorithms to tackle
complex real-world problems in diverse applications. Most proposed tech-
niques or processes combining SHM with ML are based on hybridising multi-
ple interacting numerical procedures [164]. This complexity poses challenges
when implementing an effective solution.

4647:33094692



2.4 Chapter final remarks

Based on the discussions presented in this chapter, it is evident that
the field of Structural Health Monitoring still holds significant potential
for further exploration, particularly in detecting wind turbine component
faults and, specifically, bolt loosening. This work uses machine learning and
SHM techniques, focusing on vibration signature analysis, to identify bolt
torque loosening and wind turbine operation faults under various damage
scenarios, such as blade aerodynamic imbalance, rotor icing, and flexible
coupling failure. These advanced techniques offer several advantages, in-
cluding early damage detection and operation fault, precise identification of
damage patterns, enhanced inspection accuracy, service life prediction, and
improved maintenance efficiency. Collectively, these contributions can sig-
nificantly enhance the reliability and durability of wind turbines. Given the
limited number of studies conducted in this area relative to its importance,
there is a pressing need to develop and utilise accurate and reliable tools.
This research seeks to advance the understanding and application of SHM
in wind turbine maintenance by addressing this gap, ultimately supporting
safer and more efficient wind energy systems.
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3 Methodology and Methods

The methodology process for wind turbine components’ condition as-
sessment, including detection and quantification of damage using ML model.
The methodology strategy includes processing the existing data acquired
from vibration tests, feature extraction, data augmentation strategies through
the virtual sensor, feature selection, classification damage, and performing
the detection and regression algorithms to quantify the damage with its
uncertainty quantification.

The SHM-ML process proposed in this work turns to an Open-code
tool design in Python language and named “Machine learning for Dam-
age Assessment” [165], patented under number INPI-BR10202401528 [166]
and computed code registration number BR512024001008-4. The proposed
SHM-ML process encompasses eight steps in total, comprising receiving the
normalised acquired data (Step 1), supervised data processing (Step 2),
feature selection (Step 3), data augmentation (Step 4), and unsupervised
pattern recognition, labelling, and clustering (Step 5). These steps form
the data-driven processing and SPR. Subsequently, the data splitting is
performed in Step 6. In the supervised stage, classification ML algorithms
(Steps C7 and C8) are used for damage detection, and regression (Steps
R7 and R8) is applied for damage and uncertainty quantification. The al-
gorithm supplies information regarding the damage condition based on the
classification and regression algorithm outcomes.

Figure 3.1 shows the SHM-ML methodology for damage detection and
estimation, listing each process step. The two main routes described are re-
lated to damage detection and classification and quantifying damage sever-
ity and uncertainty propagation. For the classification, the algorithms k-
nearest neighbour (k-NN), Decision Tree (DT), Random Forest (RF), Sup-
port Vector Machine (SVM), Naive Bayes (NB) and XGBoost are employed.
The regression algorithms implemented are the Linear. For damage quan-
tification, we employ nine regression algorithms: linear regression, Lasso,
KNR, DTR, GBR, SVR-linear, SVR-RBF, SVR-Poly, and MLP.
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Figure 3.1: Schematic representation of the Structural Health Monitoring method-
ology using machine learning, outlining each step of the damage detection and
quantification methodology[165].

In brief, the SHM-ML architecture is designed for the detection, quan-
tification and prognosis of structural integrity based on the measured dy-
namic response of the structure [165]. It integrates the ML algorithms into
the SHM process. This approach exclusively relies on driven data from the
monitored system, eliminating the need for numerical models. The proposed
method significantly improves torque estimation accuracy, enhances model
performance in damage-level predictions, and supports decision-making.
This section details each step of the SHM-ML method and the methods
and techniques used to model.

3.1 Algorithms descriptions

Structures and systems vary, and the approach used in this work fo-
cuses on individual monitoring. Therefore, each system must be evaluated
independently, taking the following considerations into account beforehand:

• Identify the specific damage and faults under consideration.
• Determine the information available from the system, e.g., temporal

responses, frequency spectrum, or modal properties.
• Assess whether both normal and failure conditions are provided.
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• Gather information about the damage or fault, including its natural
causes, probable components affected, and possible locations.

• Recognize that while the existence and location of damage can be iden-
tified using unsupervised learning, determining the type and severity
of damage generally requires supervised learning (Axiom III) [167].

• Acknowledge that sensors do not directly measure damage; feature
extraction through signal processing and statistical classification is
necessary to convert sensor data into meaningful damage information
(Axiom IVa) [167].

• Ensure appropriate feature extraction, as improper methods can lead
to high sensitivity to operational and environmental variations rather
than actual damage (Axiom IVb) [167].

• Consider whether data scarcity will pose challenges for monitoring.
After mapping and planning the monitoring strategy for the system un-

der evaluation, the proposed SHM-ML method is recommended. This study
investigates four applications that utilize dynamic input information: one
based on modal properties, specifically natural frequencies, as detailed in
[143], two relying on frequency spectrum analysis, and one using temporal
response data. Beyond damage classification and quantification, the chal-
lenge of data scarcity is addressed by integrating a virtual sensor into the
model for data augmentation. The SHM-ML subroutine to process temporal
responses for fault detection and classification in Algorithm 3 (Alg3), utilize
frequency response data for damage detection and quantification in Algo-
rithm 1 (Alg1), and enhance damage quantification with data augmentation
in Algorithm 2 (Alg2).
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Algorithm 1 SHM-ML for damage classification (Alg1)
1: Data Acquisition: Receive structural modal parameters data as the natural
frequency or frequency response [H(ω)].
2: Data Processing: Correcting inconsistencies, handling missing values, and
implementing signal processing techniques to convert raw data into structured
and reliable.
3: Feature Extraction: Employing damage index, e.g. FRAC-DI as:

FRACij =

∥∥∥Hdam
ij (ω)

(
Hund

ij (ω)
)∗∥∥∥2[

Hund
ij (ω)

(
Hund

ij (ω)
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5: Pattern Recognition and Clustering: Use the K-means unsupervised al-
gorithm to cluster the data.

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, re-
spectively.
C7: Classification ML algorithms: Applied ML algorithms for detection
(SVM, K-NN, RF, NB, DT and XGBoost).
C8: Model Evaluation: Calculate the Performance Measure for the ML clas-
sifiers (Cross-validation, Accuracy, Precision, Recall, and F1-score).
9: Final decision: Information about damage state based on classification and
regression algorithm outcomes.
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Algorithm 2 SHM-ML for damage quantification and data augmentation
(Alg2)
1: Data Acquisition: Receive structural modal parameters data as the natural
frequency or frequency response [H(ω)].
2: Data Processing: Repairing raw data, checking for missing values, applying
signal processing techniques to obtain a structured and usable format, and trun-
cating the signal among the mode shape more influenced by the torque loosening;
3: Feature Extraction: Employing damage indices metrics based on the trans-
missibility response using FRAC, FAAC, AIGSC, AIGAC, M-DI, R-DI method
discussed in section 3.2.2, and normalise the data and defining a threshold to
identify outliers;
4: Feature augmentation and fusion: Employing statistic method, Tabular
GAN, Forest Diffusion, and multiple DIs to increase the volume of data in the
dataset, aiming to improve the performance of the regression algorithms on dam-
age quantification. The proposed data augmentation architecture is detailed in
section 3.2.4
5: Clustering: Use the K-means unsupervised algorithm to cluster the data, see
subsection .

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, re-
spectively.
R7: Regression ML algorithms: Applied ML algorithms for quantification
(Linear regression, Lasso, KNR, SVR-kernels, DTR, Gradient Boosting Regres-
sor, see section 3.3.4).
R8: Model Evaluation: Calculates evaluation metrics for regression models,
including the coefficient of determination (R²), MAE, MSE, and RMSE.
9: Final decision: Information about damage state based on classification and
regression algorithm outcomes.
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Algorithm 3 SHM-ML for damage assessment - Time series data (Al3)
1: Data Acquisition: Receive structural from the time-domain responses.
2: Data Processing: Involves correcting raw data by checking for missing values
and applying signal processing techniques.
3: Feature extraction and normalisation: Fourteen techniques are applied
to extract features from the time-domain signal, see section 3.2.3
5: Pattern Recognition and Clustering: Use the K-means unsupervised al-
gorithm to cluster the data.

J =

n∑
i=1

mink

(
∥xi − xk∥2

)
6: Data Splitting: Split the dataset into training and testing, e.g.80-20%, re-
spectively.
C7: Classification ML algorithms: Applied ML algorithms for detection
(SVM, K-NN, RF, NB, DT and XGBoost, see section 3.3.3).
C8: Model Evaluation: Calculate the Performance Measure for the ML clas-
sifiers (Cross-validation, Accuracy, Precision, Recall, and F1-score).
9: Final decision: Information about damage state based on classification and
regression algorithm outcomes.

The overview of the algorithm’s steps is detailed in the following:

2 Data processing: This stage involves repairing raw data, checking for
missing values and applying signal processing techniques to transform
data into structured and reliable information. In addition, inconsis-
tencies are corrected, and missing values are dealt with to ensure data
integrity. Duplicated and unbalanced data is also performed in the
supervised step. (Applied to Alg1, Alg2, and Alg3)

3 Feature extraction: Using a data-driven approach involves under-
standing and examining its inherent features before integrating it into
the machine learning model for accurate classification and estimation.
Specifically, when the data involves employing the spectrum response
of the structure, as normalisation is indicated, this step, or feature
extraction, involves transforming the original data variables to create
a new dataset, as described in [59]. This data-processing step con-
verts raw experimental data into a normalised value using the DIs
[168, 143, 38]. The DIs are split into two feature attributes DI1 and
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DI2, serving as input data to the ML algorithms. (Applied to Alg1,
Alg2, and Alg3)

4 Feature augmentation and fusion by virtual sensor: Employing
statistic method, Tabular GAN, Forest Diffusion, and multiple DIs to
increase the volume of data in the dataset, aiming to improve the per-
formance of the regression algorithms on damage quantification. Sec-
tion 3.2.4 details the proposed data augmentation architecture. Data
fusion is the process of combining information from multiple sensors
to enhance the fidelity of the damage detection process [55]. In our
model, data fusion is performed using experimental and augmented
data from the virtual sensor.(Alg2)

5 Pattern recognition and clustering: In the generated dataset,
there is prior knowledge regarding the number of clusters to be cho-
sen (e.g. k = 5). However, the Python code of the elbow method can
also be applied to determine the most appropriate number of clusters
for K-means. Thus, in the clustering step, the elbow method was ap-
plied to the dataset to validate the result and closely aligned with our
assumed value of k = 5, reinforcing the empirical choice. The K-means
algorithm receives DI1 and DI2 attributes and returns clusters with
samples grouped between healthy and damaged. As a result of this
step, one generates a clustered dataset saved by the algorithm into an
Excel file named “dataset.to_excel”, which is employed in the next
steps. (Applied to Alg1, Alg2, and Alg3)

6 Data splitting: The new dataset generated by K-means (two or more
attributes and a group cluster) is divided into training and testing sets
for model construction and evaluation following a ratio, e.g. 80-20%,
respectively. (Applied to Alg1, Alg2, and Alg3)

Damage detection:

7C Classification: Six ML-supervised classification algorithms are ap-
plied to the training data using the sci-kit-learn library. This pro-
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cess allows the model to learn patterns and relationships within the
dataset. (Applied to Alg1 and Alg3)

8C Classification model evaluation metrics: This step assesses the
model’s performance by testing it on the previously separated test
dataset (as per step 6). During this stage, model hyperparameters
can be fine-tuned to improve metrics such as Accuracy, Precision,
Recall, and F1-score. Additionally, the confusion matrix is examined
for insights. Cross-validation is employed to prevent overfitting and
promote model generalisation on the training set, with 5-fold cross-
validation being utilised in the current study. The confusion matrix
graphic is generated and saved in a high-resolution PDF figure by the
function “fig.saving”. (Applied to Alg1 and Alg3)

Damage and uncertainty quantification:

7R Regression: The supervised regression ML algorithm is implemented
using the Scikit-learn library. The nine supervised regression machine
learning algorithms are applied to this software version. The same
dataset previously clustered by the K-means model (two attributes
and a group cluster) is used as input in this process, addressing the
regression problem, which returns the damage level values. (Applied
to Alg1 and Alg2)

8R Regression evaluation metrics: Predicting future data trends us-
ing the trained model based on machine learning algorithms. Perfor-
mance metrics are fundamental for supervised machine learning mod-
els, as they allow us to assess the quality of predictions. The aim is
to evaluate the model’s performance when dealing with new data, en-
suring its effectiveness. In the case of regression models, performance
is assessed using the evaluation metrics R2, MAE, MSE, and RMSE
(see Section 3.3.4. (Applied to Alg1 and Alg2)

9 Final decision and interpretation: The last step of the proposed
algorithm offers information into the damage state through the clas-
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sification algorithm and provides damage quantification via the re-
gression algorithm. It also includes uncertainty quantification in dam-
age estimation. These outcomes play a pivotal role in the interpreta-
tion and decision-making processes related to detecting damage in the
structure analysed. (Applied to Alg1, Alg2, and Alg3)

3.2 Feature extraction and augmentation

Feature extraction involves transforming and reducing data dimensions
through a multi-step fusion process to eliminate noise and highlight struc-
tural signatures from the original data. This process is often seen as essential
in ensuring the reliability of SHM systems, as it significantly impacts the ac-
curacy and effectiveness of detecting damage [61]. Obtaining enough experi-
mental data for predictive applications and implementing data-driven mon-
itoring remains a challenge in many fields[169]. Consequently, the scarcity
of data can pose problems for ML algorithms performing on experimental
system’s effectiveness, overfitting, and limited exploitation of the feature
space during model training [170]. Data augmentation methods can min-
imise such issues and provide larger datasets by generating artificial data
to improve accuracy and robustness.

3.2.1 Data analysis and processing

The first step of any damage detection system is collecting and effi-
ciently analysing and processing the sensor’s data, which serves as input
to identify changes in the monitored system. The system’s effectiveness de-
pends directly on the accuracy and reliability of the information provided by
the sensors, emphasising the importance of the quality and relevance of the
data collected [171]. Data can be classified into different types, depending
on its organisation and structure [172]:

• Structured: Data with a well-defined structure follows a standardised
order. Examples include names, dates, and addresses, among others.
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• Unstructured: Data that does not have a predefined format or organ-
isation. Examples include sensor data, emails, text documents, PDF
files, audio, videos, images, and other similar types.

• Semi-structured: Data combining structured and unstructured ele-
ments, displaying certain organisational properties without a rigid
schema. Examples include HTML files, XML, JSON documents and
NoSQL databases.

• Metadata: Data that describes other data, providing information about
characteristics such as authorship, file type, size, date and time of
creation, or last modification. Examples include attributes such as
author, file format, and document size.

This categorisation is useful for understanding the data’s characteristics and
determining appropriate collection, processing, and analysis approaches.

Algorithms are the core of data processing in damage detection mod-
els. They transform raw data into useful information for identifying and
characterising damage [173]. The choice of algorithm depends on factors
such as the type of data available (e.g. vibration, temperature, acoustics),
the complexity of the system being monitored, operating conditions, and
the requirements for accuracy and speed of detection. In addition, effective
algorithm implementation must consider computational limitations and the
conditions of the system’s environment. Therefore, choosing and implement-
ing algorithms to process the data and carry out identification is the central
element of a damage detection system. Before selecting the interpretation
algorithm, choosing between model-based or data-driven approaches is es-
sential. This work will focus on data-driven models.

Data-driven modelling, driven by machine learning [174], has become
essential for structural dynamics and SHM [175, 176]. These models are
generally built based on collected input and output data [177]. A general
process for a data-driven SHM is described below and illustrated in Fig-
ure 3.2.
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Figure 3.2: A general process for a data-driven SHM (Source: own study).

Firstly, the relevant data is collected from various sensors installed on
the monitored structure. These sensors can include accelerometers, strain
gauges, microphones, cameras, or other specialised devices. The aim is to
collect information that can reflect the state of the structure, such as vi-
brations, stresses, temperatures or images. The data must vary during the
phenomenon, show some causal relationships, and correlate with each other.
To apply the techniques successfully, the variables monitored during the
phenomenon that influence the prediction must be recorded and used as in-
puts in the model [178]. After collection, the data undergoes pre-processing
(removal of noise, inconsistent data, invalid features, normalisation to stan-
dardise different measurement scales, feature dimension reduction, etc) to
improve its quality and prepare it for analysis. Data pre-processing results
in a cleaner experimental set with more relevant features and reduced fea-
ture space, facilitating the application of data-driven methods. The aim is
to ensure that the data is consistent and usable for the following stages,
increasing the accuracy and efficiency of the system.

Feature extraction involves identifying and isolating important charac-
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teristics in the raw data indicative of the structure’s state [179]. This pro-
cess can be improved with appropriate pre-processing, statistical techniques
(mean, standard deviation), analyses in the time and frequency domains
(Fourier transform, wavelets) and identifying specific characteristics such as
amplitudes, natural frequencies and vibrational modes. This process makes
the data more representative, facilitating the model learning and improving
its efficacy. The features must be specific, sensitive to structural integrity
changes, and defined with a cause-effect relationship, allowing damage to
be detected accurately [178]. The features are then categorised to identify
patterns or anomalies that may indicate the presence of damage. In the final
stage, conventional ML or DL models make predictions and diagnoses [180].

3.2.2 Frequency-domain features

Vibration-based damage detection techniques investigate the problem
of locating and quantifying damage in a structure from changes in its dy-
namic characteristics [168]. Structure vibration signature has been used as
a sensitive indicator of structural integrity and can be employed to mon-
itor the procreation and propagation of damage. In some SHM methods,
damage detection is performed by comparing the vibration signature in two
states of the structure, one considered undamaged and the other damaged
[143]. The identification of damage by vibration-based methods is based
on the fact that the damage causes changes in the physical properties of
a structure, such as mass, damping and stiffness, and can induce changes
in the dynamic response, like the natural frequency, mode shape, and reso-
nant frequency. Therefore, changes in dynamic characteristics can be used
as damage indicators compared with the original response.

The damage index (DI) is formulated by comparing a reference signal,
usually derived from the system considered undamaged, to the one provided
by the system under the presence of discontinuing or damage [181]. Various
DI approaches have been developed to extract signal features in different
domains, aiming at identifying structural damage using an indicator that
describes the damage. The DIs are associated with the estimation tech-
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niques for damage quantification and reveal important information about
the structural health condition. Therefore, the DI is normally presented in
values between zero and unity, where the unit accuses no damage. A lower
value up to zero indicates the presence of a crack and its severity within
the analysis scenario. This work uses the DI as structure information for
the training and testing data in the multiclass ML algorithms. The DIs can
be used to classify the damaged and undamaged state from the loosening
torque conditions of a bolted joint. Resonant frequencies vary according to
the torque levels, enabling the DI to identify and quantify the torque loss.
This work uses DIs to build an ML dataset from the experimental bolted
beams-driven data.

The literature describes a range of DI developed over time. In this work,
we used the Frequency Response Assurance Criteria (FRAC), Frequency
Amplitude Assurance Criteria (FAAC), Global Shape Criteria (GSC), Global
Amplitude Criteria (GAC), Average Integration GSC/GAC (AIGSC, AIGAC),
and Monnier’s Damage Index (DI). The FRAC is a damage index represent-
ing the correlation between tested frequency responses. It references FRF
signals [182], where a unity indicates a strong correlation in case no damage
is found. In contrast, the lowest correlation reaches zero, depending on the
damage severity. The FRAC is defined by

FRACij =

∥∥∥Hdam
ij (ω)

(
Hund

ij (ω)
)∗∥∥∥2[

Hund
ij (ω)

(
Hund

ij (ω)
)∗] [

Hdam
ij (ω)

(
Hdam

ij (ω)
)∗] (3.1)

where (*) defines the complex conjugate operator, (Hdam
ij (ω)) is the FRF

vector on (j) for the damaged excited on (i) and (Hund
ij (ω)) is the FRF

vector for the undamaged, on the same aforementioned coordinates. Another
damage indicator that uses the correlation function in the frequency domain
is the frequency amplitude assurance criterion [183, 184], which measures
differences in response amplitude. FAAC follows the same idea as FRAC
and is denoted as

FAACij =
2
∥∥∥Hdam

ij (ω)
(
Hund

ij (ω)
)∗∥∥∥[(

Hund
ij (ω)

)(
Hund

ij (ω)
)∗]

+
[(

Hdam
ij (ω)

)(
Hdam

ij (ω)
)∗] (3.2)
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Global Shape Criterion (GSC) and Global Amplitude Criterion (GAC)
proposed by Zang [183, 185, 186] were used as a damage index. The GSC
and GAC must return values between zero and one for all frequencies similar
to the FRAC and FAAC. The GSC and GAC DI are defined, respectively,
by

GSC(ω) =
∥H∗

und(ω)Hdam(ω)∥2[
H∗

und(ω)Hund(ω)
] [

H∗
dam(ω)Hdam(ω)

] (3.3)

and
GAC(ω) =

2 ∥H∗
und(ω)Hdam(ω)∥[

H∗
und(ω)Hund(ω)

]
+
[
H∗

dam(ω)Hdam(ω)
] (3.4)

In addition to GAC and GSC, Zang [186] calculates a single damage
index value defined as the Mean Integration of the GAC and GSC functions,
defined as

AIGSC(ω) =
1

N

N∑
i=1

GSC(ωi) (3.5)

and

AIGAC(ω) =
1

N

N∑
i=1

GAC(ωi) (3.6)

where N is the frequency band number. The AIGSC and AIGAC indica-
tors are real constants between zero and unity, indicating total damage
or undamaged structure. The Monnier Damage Index[187] and its modi-
fied version proposed by Banerjee [188, 189] are the normalised difference
in module between two FRFs in different structural states. The Monnier
DI return a single real value between zero and unity for a given frequency
band of interest. However, values closer to zero represent minor damage (no
damage or healthy indication), while values closer to unity represent greater
damage.

DI =

∑n
i=1

∥∥∥Hund
ij (ω)Hdam

ij (ω)
∥∥∥∑n

i=1

∥∥∥Hund
ij (ω)

∥∥∥ n = 1, 2, 3...n. (3.7)

DIs =

∥∥∥∥∥∥∥1−
(
Hdam

ij (ω)
)T

∗Hdam
ij (ω)(

Hund
ij (ω)

)T
∗Hund

ij (ω)

∥∥∥∥∥∥∥ (3.8)
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where n is the captured frequency band of the spectrum and T indicates
the transposition of the FRF vector

3.2.3 Time-domain features

The signals collected by sensors in monitoring and fault diagnosis sys-
tems are usually acquired in the time domain. However, due to their oscil-
lation nature, it is difficult to identify changes caused by damages directly.
However, time domain analysis methods are widely used to extract features
from signals, as it is the first information measured from the structures,
allowing differentiation between damaged and undamaged states[190, 191].
In the feature extraction stage, it is possible to identify damage-sensitive
features using statistical analyses [192]. In addition, statistical features are
easier to estimate directly from the data.

Vibration-based damage detection and structure localisation using time
indicators are also used for SHM [193, 192]. This approach allows a tempo-
ral signal to be characterised representing it by a single value [194]. In other
words, the raw signal data is compressed into a shorter version using features
that describe it. In addition, different features in the time domain have dif-
ferent information in the vibration signal [195], providing information on the
statistical and physical properties of the signal, such as variability, peaks,
and energy. These aspects are essential for detecting faults and identifying
irregular patterns. In this study, fourteen techniques are applied to extract
features from the time-domain signal, x(t), as shown in Table 3.1, including
[196]:
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Table 3.1: Time domain feature extraction methods.

Description Formula

01. Maximum value of x(t) max[x(t)]

02. Minimum value of x(t) min[x(t)]

03. Amplitude range max[x(t)]−min[x(t)]

04. Median value of x(t) Median =

x
(
n+1
2

)
, if n is odd

x(n
2 )+x(n

2 +1)
2 , if n is even

05. Mean value of x(t) x = 1
n

∑n
i=1 xi

06. Variance of x(t) ν = 1
n

∑n
i=1(xi − x)2

07. Energy of the signal Es(x) =
∑n

i=1 x
2
i

08. Energy of the centred

signal
Ec =

∑n
i=1(xi − x)2

9. Skewness of x(t) Skew = [E((x− x)3)]/ν3/2

10. Kurtosis of x(t) Kurt = [E((x− x)4)]/ν2

11. Moment order (mi) mi = [E((x− x)i)]/νi/2, (i = 5 : 10)

12. Shannon Entropy HS(x) = −
∑n

i=1 x
2
i log2(x

2
i )

13. Signal rate (τ) τ = [max(x1:n)−min(x1:n)]/x

14. Root mean square

of x(t)
RMS =

√
1
n

∑n
i=1 x

2
i

where xi in Table 3.1 represents vibration signals, n is the total amount
of sampling points and E() represents the expected values. The amplitude
variation among the features can be an issue due to different amplitude levels
and small differences between operations thresholds. Such issues pose great
challenges for the ML algorithm in finding a pattern and performing the
classification further. To cope with this issue, we proposed a relative change
damage index (RCf ) in the feature condition extraction and incorporated
a normalisation in the feature expressed as

∆f = [max[feature]− feature] (3.9a)

RCf =
∆f

max[∆f ]
(3.9b)
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where∆f represents the difference between each element in the feature vec-
tor and its maximum values, and RCf is the feature’s relative change, cal-
culated by dividing ∆f by this maximum value. This normalisation method
ensures that the features are scaled between zero and one, preserving their
essential characteristics while enabling consistent feature comparison.

3.2.4 Data argumentation

Data augmentation artificially expands datasets by introducing vari-
ations or using deep learning to generate new data points while preserv-
ing the core characteristics of the original data [197]. Virtual sensors are
software-based tools that indirectly estimate process variables or unknown
conditions by exploiting data from physical sensors combined with data fu-
sion techniques [198]. In this work, the proposed virtual sensor performs
data augmentation and fusion of the new synthetic data with the real one.
Hence, our virtual sensor augments damage indices obtained from the raw
measurements to increase dataset volume. Furthermore, the generated syn-
thetic data is combined with the real data, and the sensor output is the
augmented DI. In practice, the virtual sensor increases the volume of data
guided by physical sensor input derived from the experimental vibration
signals of the bolted being in different health conditions.
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Figure 3.3: Virtual sensor flowchart for data fusion and augmentation (Source:
own study).

This section details the virtual sensor algorithm for data augmenta-
tion. The architecture includes four methods based on statistical moments
(Section 3.2.4), Tabular Generative Adversarial Networks (TGAN) [199]
(Section 3.2.4), Forest Diffusion [197] (Section 3.2.4), and the combination
of the multiples DIs presented in Section 3.2.4.

Figure 3.3 presents the virtual sensor flowchart proposed in this paper.
The process begins with calculating DIs from experimental transmissibilities
and then selecting a method that involves either a statistical, deep learning-
based approach for data augmentation or both. Each pathway has distinct
variations, which are detailed in the subsequent subsections. The augmented
data is then combined with the original dataset for further reproduction or
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as input to the next step of the condition assessment for torque loosening.
Hence, the virtual sensor is designed to streamline the data augmentation
process, enhancing both the performance and accuracy of machine learning
algorithms, particularly in scenarios with limited data. The overall virtual
sensor algorithmic workflow data fusion and augments are as follows

1. Start of the process: The process starts with the original data input
provided by the user. In our case, the Damage indexes.

2. Method: The user can choose between ‘Statistical Methods’ or ‘Ma-
chine Learning’.

3. Statistical Methods: In the statistical route, the algorithm calcu-
lates the mean, standard deviation and variance of the original(input)
data. The next step is to determine or select a probabilistic distribu-
tion. The log-normal distribution is used by default, but the user can
choose a different distribution, which may be more suitable depending
on the nature of the data. Both ways end in generation N-samples, as
defined by the user.

a) Log-Normal: Using the log-normal distribution, new data sam-
ples are generated using Monte Carlo simulation (N-samples).

b) Distribution: Based on the estimated or given probability den-
sity function, new samples are generated using Monte Carlo sim-
ulation.

4. Machine Learning: The machine Learning route is chosen, and the
user can select among the deep learning TGAN, CTGAN (Conditional
TGAN) or Forest Diffusion. Independent of the choice, those methods
are based on the generative adversative techniques that reproduce the
original data in an unsupervised approach.

a) TGAN: is a method for modelling the distribution of tabular
data and sampling lines from the distribution.
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b) CTGAN: is specific to dealing with non-Gaussian and multi-
modal distributions, mode-specific normalisation and conditional
training to handle unbalanced discrete columns.

c) Forest Diffusion: This model combines diffusion methods, such
as Corresponding Flow Matching (CFM), with XGBoost, an aug-
mented gradient tree method, to produce and attribute tabular
data, both continuous and categorical.

5. Data augmentation: Regardless of the previous choice, the aug-
mented data is combined with the original data to enhance the dataset
that will be input in the ML algorithms.

6. Reproducing data: The user can decide whether to round another
round of the argument process to increase the dataset further or to
proceed to the end. In the case of another round, the augmented data
is considered as ’original data’, and the process starts again.

7. End of the process: The end of the process returns the new dataset,
which combines the original and new synthetic data.

Statistical Data Generation

In this subsection, we want to generate synthetic data from an origi-
nal dataset using a lognormal distribution. The lognormal distribution is a
probability distribution where the logarithm of the variable follows a nor-
mal distribution. A key feature of the lognormal distribution is that it only
allows positive values, making it particularly suitable for modelling phe-
nomena restricted to non-negative outcomes [200]. For a lognormal random
variable, the mean (µ) and standard deviation (σ) are determined by of the
associated distribution as
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fX(x) =
1

xσ
√
2π

exp

(
−(lnx− µ)2

2σ2

)
,

µ = ln

(
x2√
v + x2

)
, σ =

√
ln
(
1 +

v

x2

) (3.10)

where x > 0 is the value of the random variable, µ is the average of the
variable’s natural logarithm, and σ is the standard deviation of the natu-
ral logarithm of the variable. Based on this statistical information, sample
generation is carried out according to the sample size defined by the user.
The samples are summed to the original dataset depending on the data
generation. For other distributions, the users can easily use it to declare the
selected distribution.

Tabular generative adversarial networks

Generative adversarial networks (GANs) are a generative modelling
technique based on neural networks, first introduced by Goodfellow et al. in
2014 [201]. GANs can generate new data that closely resembles the original
data by learning the underlying probability distribution from the training
set. In a GAN, the discriminator (D) attempts to distinguish between real
data and synthetic data, while the generator (G) creates realistic synthetic
data to deceive the discriminator [202]. A synthetic data generator based
on GANs for tabular data, known as TGAN, addresses the scarcity of ex-
perimental data. The basic architecture of TGAN is illustrated in Fig. 3.4.
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Figure 3.4: The structure of the TGAN model for generating tabular data (Source:
own study).

The TGAN proposed by Xu and Veeramachaneni [199] increased the
ability of the GAN-based model to generate tabular data that includes con-
tinuous, discrete, and categorical variables. TGAN employs a Long Short-
Term Memory (LSTM) network to generate synthetic data column by col-
umn, with each column in the original dataset having its own dedicated
LSTM cell. The role of each LSTM cell is to produce data for its respective
column, and the process is sequential. After one column’s data is generated,
its LSTM cell’s output is used as input for the next column’s LSTM cell, and
so on. This ensures that the dependencies between columns are preserved. A
Multi-Layer Perceptron (MLP) is the discriminator, distinguishing between
real and artificial data. The generator is optimised using the ADAM opti-
miser, which trains the network to generate artificial data that can fool the
discriminator. During the optimisation process, the Kullback-Leibler (KL)
divergence and the cluster vector are incorporated into the loss function,
enhancing both the efficiency of the training process and the stability of the
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model. The loss functions for the generator and discriminator are defined
as follows

LossG = −Ez∼N (0,1) logD(G(z)) +

nc∑
i=1

KL(u′i, ui) +
nd∑
i=1

KL(d′i, di), (3.11)

LossD = −Ev1:nc ,u1:nc ,d1:nd
∼P(T ) logD(v1:nc , u1:nc , d1:nd

)

+ Ez∼N (0,1) logD(G(z)) (3.12)

where u′i and d′i are generated artificial data, ui and di are original data,
nc and nd are the continuous and discrete variables, respectively. The per-
formance of the generator and discriminator is improved through iterative
training, where both work to minimise their respective loss functions. This
process continues until the discriminator can no longer distinguish between
synthetic and real data.

Generating tabular data via Diffusion and XGBoost

Diffusion models are a recent generative method that estimates a scor-
ing function and uses stochastic differential equations (SDEs) to generate
samples. This process involves transforming real data into Gaussian noise
through a direct stochastic process and learning to reverse the noise back
into data using SDEs [197]. In contrast, Conditional Flow Matching (CFM)
is a newer approach that estimates a vector field and employs ordinary
differential equations to generate data. CFM works similarly to diffusion
models, but deterministically, converting data to noise and noise to data
[197]. Both methods have been successful in data generation tasks and typ-
ically use deep neural networks to estimate the scoring function or vector
field, as neural networks are considered universal function approximations.
In this study, we employ an approach to generate artificial tabular data
using diffusion and Independent-Conditional Flow Matching [203] with XG-
Boost [204], as proposed by [197]. The method employs a Gradient-Boosted
Tree (GBT) model instead of neural networks to estimate the vector field or
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scoring function. This technique generates realistic tabular data, which can
be trained on complete or incomplete data, covering continuous and cate-
gorical variables. The stages of the Forest Diffusion method are described
below and illustrated in Figure 3.5, following the steps:

1. The first stage duplicates the original dataset, represented as x by
n-times.

2. The second stage adds a different noise to each duplicated dataset.
Each duplicate data receives a different Z noise vector, creating several
noisy versions of the original data.

3. The third step calculates the linear interpolation between the dupli-
cate dataset x and its corresponding noise Z for different times t. The
interpolation is given by:

x(t) = tx+ (1− t)Z, t ∈
{
0,

1

3
,
2

3
, 1

}
(3.13)

4. The final step involves regressing a Gradient-Boosted Tree (GBT)
model for each noise level against the vector field. During this phase,
the models are trained to map the interpolated data x(t) to the cor-
responding vector field, minimising the difference between the model
output and the expected data. The optimisation is performed to min-
imise the following loss function:

minf∥f(x(t))− (x− Z)∥22 (3.14)

Figure 3.5: Steps of Forest-Flow method (Adapted from [197]).
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Damage Index combined

The combination of the damage indices, detailed in Section 3.2.2, in-
creases the volume of features from the original data. The advantage of
this approach is that it is based only on the system’s physical properties,
thereby improving the robustness and accuracy of monitoring. As the ma-
chine learning algorithms input are often represented as vectors or matrices
[205], our data features are organised in tabular and defined as a matrix of
vectors, where each row of the table represents an instance or data point,
the DI value, and each column represents a resource associated with a par-
ticular DIs attribute (DI1 and DI2). For a particular damage index, e.g.
FRAC DI, the tubular matrix yields

DI =


DI1,11 DI2,21

DI1,21 DI2,22
...

...
DI1,k1 DI2,2k

 (3.15)

where k represents the table’s number of rows containing the damage index
values. The combined DIs in the tabular matrix consider more columns of
damage indices derived from other theories, represented by

DImulti =


DIFRAC

1 DIFAAC
1 · · · DIn

1

DIFRAC
2 DIFAAC

2 · · · DIn
2

...
...

...
DIFRAC

k DIFAAC
k · · · DIn

k

 (3.16)

where FAAC expresses the damage indices methods used considering in the
feature extraction. There is no limitation of the feature added. , but in this
case, for a good performance of the K-means, the columns must added in
pairs of attributes (DI1 and DI2).

3.3 Machine learning algorithms

Machine learning is a technique within the field of artificial intelli-
gence. It is defined as a process that automatically extracts patterns from
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data [141], then uses the discovered patterns to make predictions about fu-
ture data or to carry out other types of decision-making under uncertainty.
This technique aims to determine a model that examines data to identify
patterns or make predictions [206]. The model results from the training
process, which involves a set of data and an algorithm that can be used to
analyse and learn from that data. During training, the model adjusts its
parameters to find the most relevant patterns in the data and becomes an
accurate prediction based on new data. Machine learning has become in-
creasingly popular in recent years due to its ability to analyse large amounts
of data, identify patterns and make predictions or decisions based on that
data [207]. With the rapid increase in data availability and the constant ad-
vancement of computing capabilities and programming methods, ML tools
are increasingly used in various engineering areas [208].

The ML algorithms provide the tools needed to expand the capabili-
ties of SHM systems [51]. It offers efficient solutions for building models or
representations to map input patterns in measured sensor data to output
targets for a damage assessment at different levels [209]. ML is part of this
feature selection paradigm and statistical modelling for feature discrimina-
tion described in [55, 210]. In the literature, there are different types of
machine learning methods [211]. The most commonly used approaches are
Methods based on the amount of human supervision in the learning pro-
cess (Supervised learning, Unsupervised learning, Semi-supervised learning
and Reinforcement learning), Methods based on the ability to learn from
incremental data samples (Batch learning or offline learning and online
learning) and Methods based on their approach to generalising from data
samples (Instance-based learning and Model-based learning).

The most commonly used categories of machine learning are super-
vised and unsupervised learning [212]. The main difference between the two
categories lies in how the rules for classifying patterns are modelled. For
example, when information on a structure’s damaged and undamaged state
is available, pattern recognition can be based on the supervised learning
approach. When information on the damaged state is not available, un-
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supervised learning is applied. Supervised learning best suits scenarios in
which damaged and undamaged structure data is available for engineering
structures [43].

3.3.1 Unsupervised learning

In unsupervised learning, the pattern is determined by an unknown
class ‘boundary’, i.e. there is no prior information about the class to which
the patterns belong, as there is no class associated with the pattern. All
data is unlabelled [64]. This usually involves finding hidden structures in
the data based solely on their characteristics and similar patterns. In this
case, as there is no prior information about the desired result, i.e. the train-
ing data is missing, it can only be used to detect and possibly localise the
damage [55]. Unsupervised learning is widely used to detect outliers due
to the unavailability of the training data set [213]. Outliers, or anomalies,
are patterns in data that do not follow a typical, well-defined behaviour
[214, 215]. They can arise due to mechanical failures, changes in system be-
haviour, fraudulent behaviour, human errors, instrumental errors or simply
natural deviations in populations [216].

There are many different types of unsupervised learning, including K-
means Clustering, Hierarchical Clustering [217], GMM [158], Hidden Markov
model [218] and PCA in the context of dimensionality reduction [219]. The
K-Means clustering algorithm used in this work is an unsupervised ML in
which data objects are distributed into a specified number of k clusters [220].
The k is a hyperparameter that specifies the number of clusters that should
be created. It is a useful approach for clustering (labelling) or partitioning
the data before feeding the labelled data as the output of a supervised ML
algorithm. The aim is to find centroids that measure the cluster’s centre
point, such that the sum of the squared distances of each data sample to
its nearest cluster centre is minimal. The nearest here is concerning the
Euclidean norm (L2 norm). Thus, the objective function is

J =
n∑

i=1

mink

(
∥xi − xk∥2

)
(3.17)
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where xi represents the ith instance in cluster k, and xk denotes the mean
of the samples or “centroid” of cluster k.

The K-Means algorithm is widely used due to its simplicity of im-
plementation and low computational complexity. Still, one of the biggest
problems of K-Means clustering algorithms is the initial definition of the
number of clusters that must be used. When dealing with highly complex
problems where the cluster count is hard to define, the “elbow” method can
provide insights into the potential number of required clusters. Another dis-
advantage of K-means is that it is very sensitive to outlier points, which can
distort the centroids and the clusters [221]. This work employs K-means for
feature selection, clustering, and pattern recognition.

3.3.2 Supervised learning

In supervised learning, the input pattern is identified based on avail-
able information, i.e., the class is defined from a knowledge base of known
patterns. This way, it assigns a class to this unknown object through a
similarity measure with previously classified known objects. The known in-
formation forms a set of ‘labelled’ patterns. There is a very high demand
for data in this case, as all possible damage situations must be available.
The supervised learning approach is divided into a Regression problem and
a classification problem [219].

Regression is a predictive learning problem that maps a data item to a
real-value predictor variable. In other words, it has to predict a numerical
characteristic of the data [222]. Regression predicts likely future or desir-
able outcomes from a set of labelled data. Regression models are widely
used in various fields, including financial forecasting [223], price estimation
[224], production [225], thermoelectric performance estimation [226], con-
crete compressive strength prediction [227] and many more. Classification
is also a predictive learning problem. In this case, a label has a previous
classification for a given example, and we want to predict which class an
unclassified piece of data belongs to, i.e. it is the division of data into sev-
eral known categories. Two types of classifiers are available considering their
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output characteristics, binary and multiclass classification [228, 229].

• Binary Classification: This refers to classifying data with two class
labels or groups/categories, for example, ‘true and false’ or ‘positive
and negative’. In binary classification problems, one class can be the
undamaged state, while the other class can be the damaged state.

• Multi-class classification: This refers to classifying data with more
than two class labels or groups/categories. In multiclass classification
problems, objects are assigned to a category within a specified range
without the distinction of normal or abnormal results, as found in
binary classification.

Many classification algorithms are proposed in the machine learning
literature, such as those described in [217, 230]. Herein, we highlight the
ones we have used in our method.

3.3.3 ML algorithm used in damage detection and classification

The classifier algorithms employed to classify the damage are the su-
pervised Naive Bayes, Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbours (KNN), Support Vector Machine (SVM), and extreme Gradi-
ent Boosting (XGBoost). To cluster the data and perform the SPR, the
unsupervised K-means.

K-Nearest-Neighbour classifier

K-nearest neighbour is one of the simplest supervised learner methods
[221, 53] and widely used for pattern recognition[231]. KNN can be used for
classification and regression, where data with discrete labels usually uses
classification and data with continuous labels regression. The classification
is calculated from a simple majority vote of the nearest neighbours of each
point: a query point is assigned the data class with more representatives
within the nearest neighbours of the point. A metric between the points is
used spaces[221].
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The KNN algorithm, in its simplest version, only considers exactly one
nearest neighbour, which is the closest training data point to the point we
want to predict. The prediction is then simply the known output for this
training point. Depending on the value of ‘kn’, each sample is compared
to find similarity or closeness with ‘kn’ surrounding samples. For example,
when kn = 5, the individual samples compare with the nearest five sam-
ples; hence, the unknown sample is classified accordingly [221]. The optimal
choice of ‘kn’ value is highly data-dependent. In general, a larger suppresses
the effects of noise but makes the classification boundaries less distinct.

Decision Tree and Random Forest

Decision tree supervised algorithm can target categorical variables such
as the classification of a damaged or undamaged statement and continuous
variables as regression to compare the signal with the healthy state of the
system [53]. Learning a decision tree means learning the sequence of if/else
questions that gets us to the true answer most quickly. A tree contains
a root node representing the input feature(s) and the internal nodes with
significant data information. Each node (a leaf or terminal node) represents
a question containing the answer. The interactive process is repeated until
the last node (leaf node) is reached such that the node becomes impure
[221]. The data get into the form of binary features in our application, and
a classification procedure is performed.

The random forest ML algorithm is an ensemble classifier that consists
of many decision trees, and the class output is the node composed of in-
dividual trees. The RF has high prediction accuracy, robust stability, and
good tolerance for noisy data. The law of large numbers does not overfit
and has been used for structural damage detection. It has shown a better
performance [232].

Support Vector Machine

Support Vector Machines are supervised machine learning techniques
developed from the statistical learning theory that can be used for classifying
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and regressing clustered data. In the case of linear classification, with two
classes, let {(xi, yi), ..., (xn, yn)}, a training dataset with n observations,
where xi represents the set of input vectors and yi(+1,−1) is the class label
of xi, the hyperplane is a straight line that separates the two classes with
a marginal distance (as seen in Fig. 3.6). The purpose of an SVM is to
construct a hyperplane using a margin, defined as the distance between the
hyperplane and the nearest points that lie along the marginal line termed
as support vectors [233].

𝑤𝑥 + 𝑏 = 0

𝑤𝑥 + 𝑏 = 1

𝑤𝑥 + 𝑏 = −1

𝑀𝑎𝑟𝑔𝑖𝑛
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑥1

𝑥2

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

𝜖

𝜉𝑖
𝜉𝑖
∗

Figure 3.6: SVM algorithm operation (Source: own study).

One can define the hyperplane by Eq. (3.18), where we have the dot
product between x and w added to the term b:

D(x) = wT .x+ b = c for − 1 < c < 1 (3.18)

where x represents the points within the hyperplane, w is the weights that
determine the orientation of the hyperplane, and b is the bias or displace-
ment of the hyperplane. When c = 0, the separating hyperplane is in the
middle of the two hyperplanes with c = 1 and −1. An SVM aims to max-
imise the data separation margin by minimising ||w||. This optimisation
problem can be obtained as the quadratic programming problem given by

min
||w||2

2
s.t yi(w

T .xi + b) ≥ 1 for i = 1, 2, ..., n (3.19)

7879:54738724



where ||w|| is the Euclidean norm. The SVM algorithm encompasses linear
and nonlinear classification and linear and nonlinear regression. The main
idea of the algorithm consists of fitting as many instances as possible a
“tube” while limiting margin violations. Therefore, SVR wants to find a
hyperplane that minimises the distance from all data to this hyperplane.
The width of the “tube” is controlled by a hyperparameter, which has an
error “insensitive” area, defined by ϵ, as illustrated by Figure 3.6. The larger
the ϵ, the larger the diameter of this tube, and the less sensitive the model
is in predicting points within it. In contrast, the smaller ϵ, the smaller the
diameter of the tube, the greater the chances of points being on the edges
of the tube, making the model more robust. The samples that fall into the
ϵ-margin do not incur any loss. Points outside the tube are examined and
considered concerning the ϵ-insensitive region. Compared to a previously
defined error called slack variables (ξ). This approach is similar to the “soft
margin” concept in SVM classification because the slack variables allow
regression errors to exist up to the value of ξ and ξ∗i , yet still satisfy the
required conditions. Including slack variables leads to the objective function
given by Eq. (3.27).

Minimize :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

Constraints : yi − wT .xi − b ≤ ϵ+ ξi

wT .xi + b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(3.20)

Naïve Bayes

Naïve Bayes classification is a probabilistic classification method based
on Bayes theorem with the assumption of independence between features,
considered a simple technique for constructing classifiers with models that
assign class labels to problem instances, represented as vectors of feature
values, where the class labels are drawn from some finite set. There are three
classes in sk-learn, the Gaussian-NB, Multinomial-NB, and Bernoulli-NB.
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The first assumes a Gaussian distribution, the second is for discrete occur-
rence counters, and the third is for discrete boolean attributes [234]. Naive
Bayes classifiers are highly scalable, requiring several linear parameters in
the number of variables in a learning problem. Maximum-likelihood training
can be done by evaluating a closed-form expression. In other words, one can
work with the naive Bayes model without accepting Bayesian probability
or using any Bayesian methods. An advantage of naive Bayes is to train a
model with few samples [235].

Extreme Gradient Boosting (XGBoost)

XGBoost (short for Extreme Gradient Boosting) is an efficient imple-
mentation of Gradient Boosting Machines (GBM), developed by Tianqi
Chen [204], widely recognised for its superior performance in supervised
learning. This versatile algorithm is also considered an ensemble tree tech-
nique that can be used for regression and classification tasks. XGBoost fol-
lows the concept of weak-learner, where each predictor could be improved
by sequentially training new trees to the model [236]. In other words, the
XGBoost makes predictions by creating numerous smaller decision trees,
also known as subtrees. Each subtree makes predictions for the data, com-
bining their predictions to form the final prediction for the given input. This
ensemble approach helps improve the accuracy and generalisation ability of
the predictive model. The process involves iteratively training these sub-
trees to correct the errors made by the previous subtrees, gradually refining
the overall prediction as more trees are added.

Another feature related to XGBoost is that it uses L1 and L2 regular-
isation, which helps with model generalisation and reduction of overfitting.
It uses an optimisation strategy that produces better weights as it calcu-
lates the weights of the component models. It also uses slightly less tiny
component models.
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Evaluation metrics for classification models

The performance of the classification models was evaluated using key
metrics such as Accuracy in Eq. 3.21, Precision in Eq. 3.22, Recall in
Eq. 3.23, and F1-score in Eq. 3.24, which are based on True Positive (TP),
True Negative (TN), False sitive (FP) and False Negative (FN) samples
[237, 238]. These metrics are crucial at various stages of the modelling pro-
cess, such as model type selection, final evaluation and ongoing performance
monitoring [239].

Accuracy(y, ŷ) = TP+ TN
TP+ FP+ TN+ FN (3.21)

Precision(y, ŷ) = TP
TP+ FP (3.22)

Recall(y, ŷ) = TP
TP+ FN (3.23)

F1 = 2× Precision× Recall
Precision+ Recall (3.24)

where yi and ŷ represent the true and predicted label, respectively.
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Figure 3.7: Confusion Matrix (Source: own study).

The confusion matrix [240] is also vastly employed to verify the data
classification, which provides the correct configurations of the classified
data. It compares actual values with predicted values, categorizing them
into two labels: “Positive” and “Negative” [241]. The matrix’s main diago-
nal values show how many correct model predictions are for each class. To
illustrate, consider a 2×2 confusion matrix in Figure 3.7, where:
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• True Positive (TP): The number of instances where the ML model
correctly classifies a sample as belonging to the “Positive” class.

• False Negative (FN): The number of instances where the ML model
incorrectly classifies a sample as belonging to the “Negative” class
when it belongs to the “Positive” class.

• False Positive (FP): The number of instances where the ML model
incorrectly classifies a sample as belonging to the “Positive” class when
it belongs to the “Negative” class.

• True Negative (TN): The number of instances where the ML model
correctly classifies a sample as belonging to the “Negative” class.

Cross Validation

When developing a machine learning model, it is essential to check that
the model is well-adjusted. A simple approach is to split the data into two
sets: training and test [242]. The model is trained with the training set to fit
the model and is evaluated in terms of accuracy using the test set [243]. The
data split usually follows proportions, such as 80% for training and 20% for
testing, and can be adjusted according to the problem. However, when eval-
uating the model only once, the question of whether the good performance
observed was due to random factors may arise. To obtain greater confidence
in the quality of the model, it is necessary to evaluate it several times using
methods such as cross-validation, which allows for a more consistent and
robust analysis of the model’s performance.

Cross-validation is a widely used statistical method for evaluating per-
formance, comparing machine learning algorithm models on unseen data
samples and preventing overfitting [244, 38, 245]. This approach provides
a more accurate estimate of the generalisation error, especially in small
datasets. By evaluating the model on multiple validation subsets, cross-
validation offers a more realistic view of its performance, helping to identify
and mitigate overfitting, which occurs when the model provides accurate
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predictions for the training data but not for the new data in the test set
[246]. It also provides a reliable estimate of the model’s expected perfor-
mance on new and unseen data. The method splits the data into two seg-
ments: one for training the model and the other for validation (testing) [247].
The most common cross-validation approach is k-fold cross-validation [248].

In k-fold cross-validation, the dataset is randomly divided into kf sub-
sets called folds (where kf is defined in advance), with an approximately
equal sample in each subset. The model is trained and evaluated kf times,
using a different fold as a test set in each iteration. In the first iteration,
the first fold serves as the test set, while the remaining kf −1 folds are used
for training. The process is then repeated with the second fold as the test
set, and so on, until each fold has been used once for validation, ensuring a
comprehensive evaluation of the model. Each iteration generates an evalua-
tion metric, such as accuracy, to monitor the performance of each learning
algorithm. These metrics assess the model’s ability to generalise to new and
unseen data. Cross-validation is a fundamental tool in machine learning for
evaluating model performance, preventing overfitting and selecting the most
suitable model. Systematically dividing the data into training and valida-
tion sets and repeating this process several times provides a more robust
and reliable estimate of the model’s generalisation ability.

3.3.4 ML algorithms used to damage quantification

For damage quantification, we employ nine regression algorithms: lin-
ear regression, Lasso, KNR, DTR, GBR, SVR-linear, SVR-RBF, SVR-Poly,
and MLP. This approach exclusively relies on experimental data from the
monitored system, eliminating the need for numerical models. The proposed
method significantly improves damage level quantification accuracy, en-
hances model performance in fault-level predictions, and supports decision-
making.
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Linear Regression

Linear Regression fits a linear model to the dataset by adjusting a
set of parameters to minimise the sum of squared residuals of the model.
It is considered a straightforward and commonly used statistical regression
method for predictive analysis in machine learning [249]. The Equation 3.25
for linear regression is as follows

y = θx+ α (3.25)

where θ is the slope of the line, α is the intercept, x is the independent
variable (input feature), and y is the dependent variable (output feature).

LASSO Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator)
[250] is a regression technique that combines linear regression with L1 regu-
larisation. The main aim of Lasso is to improve the generalisation capacity of
the model by performing both regularisation and variable selection. L1 regu-
larisation adds a penalty to the sum of the absolute values of the parameter
coefficients, which reduces the coefficients of less significant characteristics
to zero. This allows Lasso to automatically select the most important fea-
tures, eliminating irrelevant ones and reducing the dimensionality of the
model. Lasso’s objective is to minimise the loss function:

β̂L1,λ = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

βjYi,j

2

+ λ

p∑
j=1

|βj |

 (3.26)

where y and Yij are the response and predictor variables, respectively; β0
and βj are the coefficients to be estimated; λ is the regularization parameter
that controls the strength of the L1 penalty; p is the number of predictors
(features); n is the number of observations. This technique is particularly
effective for dealing with high-dimensional data [251], where many variables
may be insignificant. Lasso helps solve multicollinearity problems by better
distributing the coefficients [252]. Lasso regression is ideal for predictive
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problems due to its ability to automatically select variables, simplify models
and increase the accuracy of predictions.

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a supervised learning algorithm that
learns a function by training on a dataset. The MLP Regressor class imple-
ments a multilayer that trains using backpropagation without an activation
function in the output layer, which can also be seen as using the identity
function as the activation function. Therefore, it uses the mean squared er-
ror as the loss function, and the output is a set of continuous values. MLP
Regressor also supports multi-output Regression, where a sample can have
more than one target [249].

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning algorithm
used for the regression of linear and nonlinear tasks. SVR can be applied to
nonlinear problems using kernel functions such as Polynomial and Gaussian
radial basis function (RBF) [253], which project the sample space into a
higher-dimensional space where the data become linearly separable. It works
by finding a hyperplane that minimises the distance from all data to this
hyperplane. The width of the “tube” is controlled by a hyperparameter,
which has an error “insensitive” area, defined by ϵ. The samples that fall
into the epsilon margin do not incur any loss. Points outside the tube are
examined and considered concerning the ϵ-insensitive region. Compared to
a previously defined error called slack variables (ξ). Including slack variables
leads to the objective function given by

Minimize :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

Constraints : yi − wT .xi − b ≤ ϵ+ ξi

wT .xi + b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(3.27)
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where, w is the weight vector, b is the bias term, C is the regularisation
parameter, ϵ is the epsilon-insensitive loss parameter, xi are the input fea-
tures, yi are the target values, and ξi and ξ∗i are slack variables that allow
for errors.

Decision Tree Regressor (DTR)

Introduced by Breiman et al. [254], the Decision Tree algorithm trans-
forms data into a tree structure where each internal node represents an
attribute, and each leaf represents a class label. Used for both classifica-
tion and regression, these trees categorise discrete and continuous data or
predict numerical values. The common loss function is the squared error,
which needs to be differentiable for regression problems [255, 256]. Inspired
by real trees, they consist of a root node representing the input feature(s)
connected to internal nodes that end in leaves, making them effective for
segmenting complex data. The interactive process is repeated until the fi-
nal leaf node is reached, and then the node becomes impure. The average
response value of the observations in each leaf is used as the final prediction
[257]. However, as the size of the data increases, the branches proliferate,
increasing the processing time. Modifications to the algorithms help reduce
the leaf count to mitigate this difficulty.

Gradiente Boosting Regressor (GBR)

Gradient Boosting (GB) is a popular ensemble method in the machine
learning community, proposed by Friedman [258]. This technique combines
multiple decision trees to create robust and effective models for classifica-
tion and regression tasks [259]. GB repeatedly adds decision trees so that
each new tree corrects the errors of the previous tree. Unlike other meth-
ods, GB does not adjust the weights of the training examples. Instead, each
predictor is trained using the residual errors of the previous model as labels.
The decision trees used in GB are generally shallow, with depths ranging
from one to five, which makes the model lighter and the predictions faster.
These shallow trees, called weak learners, improve the model’s performance
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as more trees are added [256]. GB effectively categorises data into discrete
classes and predicts numerical values in regression tasks. It uses a stepwise
additive model, where only one new weak student is added at a time, while
the previous ones remain unchanged. This is similar to gradient descent,
where the model is fitted by minimising the gradient of the loss function.
Equation 3.28 presents the Gradient Boosting function for regression prob-
lems, where the gradient of the loss function is minimized.

F (x) =
n∑

i=0

δih(x; γ) (3.28)

where h(x; γ) is a parameterised function of the input variables x, charac-
terised by the parameters γ, and δi is the expansion coefficient.

K-Neighbors Regressor (KNR)

The K-Nearest Neighbours algorithm is a simple, non-parametric method
used for classification and regression [260]. In the context of regression, KNN
makes predictions by identifying the kn data points closest to a given input
and calculating the average of their target values for numerical regression.
For classification, it selects the majority class among the nearest neighbours.
The choice of parameter kn is crucial: smaller values of kn result in more
flexible and less biased models, while larger values produce smoother and
more robust models. KNN is called a ‘Lazy Learner’ because it does not
go through a traditional model learning phase, memorising the entire train-
ing dataset [261]. Although effective at capturing local patterns, KNN faces
high-dimensional difficulties and depends heavily on the distance metric
chosen (Euclidean or Manhattan) [262]. The choice of kn and the distance
metric must consider the data’s characteristics and the problem in question.

Evaluation metrics for regression models

The Assessment of regression models is measured using common met-
rics like the Coefficient of Determination (R2), Mean Absolute Error (MAE),
Mean Square Error (MSE), and Root Mean Square Error (RMSE). These
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metrics are widely used to compare predicted values to actual ones and show
how well the model performs [263]. The R2, or the coefficient of determina-
tion (Eq. 4.22a), measure the variation in the actual values relative to the
model’s prediction. It ranges from 0 to 1 (or from 0% to 100%) and indi-
cates how well the model explains the variability of the response variable
[239, 264].

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(3.29)

where yi is target value, ŷi is model’s prediction, and ȳi is the average of all
the target values.

The Mean Absolute Error (MAE) is the mean of the absolute differences
between the actual and predicted values, calculated by Eq. 4.22b [264].

MAE =
1

n

n∑
i=1

∥yi − ŷi∥ (3.30)

The Mean Squared Error (MSE) is the average of the squared differ-
ences between the predicted values, as calculated by Eq. 4.22c [264].

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.31)

The Root Mean Squared Error (RMSE) (Eq. 4.22d) is the square root
of the MSE. The MAE, MSE, and RMSE values range from 0 to ∞, with
lower values indicating better performance of the regression model [264].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.32)

3.3.5 Uncertainty quantification

Despite advances in machine learning, which have increased the accu-
racy of predictions in various fields, especially engineering, the relationship
between the inputs (x) and the target variable (y) is still subject to uncer-
tainty [265]. This uncertainty represents a lack of confidence in the model’s
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predictions [266]. It can stem from the limitations of the models them-
selves and the natural unpredictability of the phenomena analysed, even
with abundant data and available resources [267].

Machine learning models must provide more than a result to ensure
safer and more informed decision-making. They need to show, as accurately
as possible, the confidence level around their predictions before they are
used in practice. This means presenting the results with clear information
about the associated uncertainty and whether it is low enough to make
the result reliable. If the uncertainty is high, the algorithm can request
additional data or human intervention to assist in decision-making. The
uncertainty that affects machine learning models can be categorised into
two main types [268, 269, 270]: Aleatoric uncertainty (data uncertainty)
and Epistemic uncertainty (parameter/model uncertainty).

• Epistemic uncertainty (parameter/model uncertainty): This
uncertainty arises from incomplete or inadequate knowledge about the
system [266]. A lack of training data can cause this, poor quality infor-
mation or simplifications and assumptions made during the modelling
process [271]. This uncertainty is reducible, i.e. it can be minimised
by increasing the dataset and gaining a more detailed understanding
of the model’s structure and constraints [265]. However, this approach
does not affect random uncertainty [267]. In the context of ML, epis-
temic uncertainty is particularly relevant and can be classified into
two categories [272]:

1. Model shape uncertainty: This arises from simplifications or
architectural choices, such as activation functions in neural net-
works or kernel function shapes in GPR models.

2. Parameter uncertainty: Related to the calibration and train-
ing processes, caused by insufficient training data, bias in the
data or difficulties in the optimal adjustment of the parameters
by the algorithms.
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Epistemic uncertainty is higher in regions with little training data and
lower in areas with higher data density, highlighting the importance
of enriching datasets and improving training quality to reduce the
impact of these limitations [265].

• Aleatoric uncertainty (data uncertainty): This type of uncer-
tainty is associated with the inherent noise or stochastic variability
of the process that generates the data [271]. Unlike epistemic uncer-
tainty, it is not related to the model but rather to the nature of the
data itself and is therefore irreducible, even with the addition of more
data for training [266, 265].

This uncertainty stems from the natural variability of physical sys-
tems, such as noise in sensor measurements, variability between sam-
ples or the dispersion of responses in replicated experiments. In ma-
chine learning problems, it reflects the stochastic nature of inputs,
outputs or the dependencies between them and is often modelled in
the likelihood function of probabilistic models [272]. Therefore, in the
context of ML, random uncertainty arises from the intrinsic variability
of the data, where the same vector of characteristics x can be related
to different labels y [267]. Examples include variability in classes in
classification problems and in outputs in regression problems. As an
intrinsic property of data, this uncertainty represents a limit on the
accuracy that ML models can achieve [272].

Uncertainty quantification (UQ) is crucial in machine learning, espe-
cially in critical scenarios where incorrect decisions can have severe conse-
quences. UQ ensures more reliable results by providing confidence intervals
for predictions, recognising the probabilistic nature of the results rather
than just seeking greater accuracy [267]. One advantage of UQ is that it
helps users set confidence limits on model predictions, which can sometimes
become dangerous. In this sense, UQ extends classical statistical analysis to
include the uncertainty generated by noise, incompleteness and scarcity of
data, offering robust support for risk management [272].
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In fault diagnosis, UQ is of paramount importance as it provides a
measure of the confidence associated with the results, which is essential
for making informed decisions in critical systems. It allows engineers and
operators to interpret diagnoses and understand the degree of reliability
of this information. Quantifying the uncertainty associated with the pro-
cess is relevant when machine learning techniques are evaluated by met-
rics such as accuracy, precision, recall, F1-score, and the confusion matrix,
which consider false positives and false negatives and can have significant
consequences. These include unnecessary maintenance actions or failure to
identify critical problems [273].

Employing UQ in the final SHM process increases the reliability and
robustness of ML models. UQ is interested in providing model security and
transforming ML solutions into critical decision problems that bring greater
gains and less exposure to the risks arising from algorithm failures or limita-
tions. Although there is no way of achieving absolute certainty, it is essential
to understand, quantify, and, whenever possible, reduce this uncertainty so
that the chances of error or deviations from the model’s projections can
be accurately estimated. In this study, uncertainty in projections is inves-
tigated using the Mean (Eq. 3.33), Standard Deviation (Eq. 3.34) and the
application of the Probability Density Function (PDF) (Eq. 3.35).

Mean (x) =

∑n
i=1 xi
n

(3.33)

where x represents the values of the variable,
∑

indicates “the sum of,” and
n denotes the total number of observations.

Standard deviation =

√∑n
i=1(xi − x)2

n− 1
(3.34)

The PDF is a function defined in the sample space S, where S ⊆ R, of a
continuous random variable X. It can be used to determine the probability
of the variable X taking on values within a certain interval. The PDF of a
continuous variable X is a function f(x) such that [274]:

P [s ≤ X ≤ t] =

∫ t

s
f(x) dx (3.35)
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where P (s ≤ X ≤ t) represents the probability of the variable X taking
on values in the interval [s, t], and f(x) is the PDF. Here, s and t are real
numbers. The PDF must fulfil the following conditions:

1. For all values x in the sample space, f(x) is a nonnegative function,

f(x) ≥ 0 for all x ∈ R,

2. The integral of f(x) over the entire sample space is equal to 1. This
guarantees that the sum of the probabilities is unitary:∫ ∞

−∞
f(x) dx = 1.

3.3.6 Chapter final remarks

This chapter details the methodological framework employed in this
study, which includes data processing, feature extraction, machine learn-
ing strategies, and uncertainty quantification. The proposed approach inte-
grates frequency- and time-domain analyses with data augmentation tech-
niques to enhance the robustness of feature extraction. These steps ensure
the input data is well-structured and representative of real-world SHM con-
ditions.

The selection of machine learning algorithms, including supervised and
unsupervised learning techniques, was motivated by their ability to detect,
classify, and quantify structural damage based on vibration spectral data.
Using both traditional and advanced regression models for damage quantifi-
cation reinforces the reliability of the proposed methodology. Furthermore,
uncertainty quantification techniques were incorporated to address variabil-
ity in real-world conditions and improve the interpretability of results. While
this methodology provides the basis for the study, challenges such as data
imbalance, model interpretability, and computational costs were carefully
considered. The subsequent chapter presents the results of applying these
methods, offering insights into their effectiveness and limitations in real-case
scenarios.
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4 Data-driven machine learning structural health
monitoring: Experimental case studies

A wind turbine system comprises subsystems connected mainly by bolts
or weddings. This section presents case studies applying the SHM-ML pro-
cess proposed in this work. The first study (Section 4.1) aims to monitor
and evaluate three component faults during the real operation of the Aventa
wind turbine. In this case, the raw data employed in the monitoring is the
accelerance temporal spectrum, and the Al 3 is used. Bolted connections,
presented in many parts of the turbine, are evaluated using a laboratory ex-
perimental setup. The second case(Section 4.2) aims to identify and classify
torque loosening in structure bolted joints using raw spectral signals in the
frequency domain from experimental tests. The approach combined super-
vised and unsupervised techniques and employed the Al 1, using a damage
index calculated from the frequency response of the joint system as input
data. The third case (Section 4.3) integrates regression algorithms with data
augmentation techniques to more accurately estimate torque loosening us-
ing raw vibration spectra in a bolted structure. These studies demonstrate
the efficiency of the developed SHM-ML process, which contributes to fault
detection and improves the reliability of complex mechanical structures and
systems.

4.1 Case I: Failure classification in wind turbine components dur-
ing operation

Despite recent advances, challenges persist in adapting SHM techniques
to complex operational and environmental conditions and improving detec-
tion accuracy and reliability. While many studies employ supervised and
unsupervised learning techniques to enhance anomaly detection or optimise
classifiers for specific turbine components, integrating these techniques into
a unique SHM framework remains a significant research challenge. In this
case study, we used the unsupervised clustering technique k-means to clas-
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sify and group data into homogeneous clusters, enabling pattern identifi-
cation without predefined labels. Algorithm 3, described in Section 3.1, is
used to classify the four real operational conditions of the Aventa wind tur-
bine. The proposed model consists of receiving the data, processing, feature
extraction, feature selection and normalisation, unsupervised classification
and clustering, data splitting, supervised classification, and model evalua-
tion.

4.1.1 Wind turbine experimental benchmark

The wind turbine dataset utilised in this study is from the Aventa
AV-7 model, manufactured by Aventa AG and commissioned by the ETH
Zurich Department of Structural Health Monitoring. It is located in Taggen-
berg, Switzerland, at coordinates 47°31’12.2”N 8°40’55.7”E [25]. This 6.7
kW-rated power turbine operates via a belt-driven generator and a fre-
quency converter with a variable-speed drive. It initiates power generation
at wind speeds of 2 m/s, with a cut-off speed of 14 m/s. The turbine fea-
tures a 12.8-meter rotor diameter comprising three blades and is mounted
at an 18-meter hub height. The maximum rotational speed reaches 63 rpm.
Structurally, the tower is composed of tubular steel reinforced with con-
crete, supported by a concrete foundation, while the blades are constructed
from fibreglass with a tubular steel main spar. Turbine control is achieved
through a variable-speed, variable-pitch mechanism. The instrumentation
on the tower and nacelle included 11 accelerometers strategically positioned
along the tower length, the nacelle main frame, the main bearing, and the
generator. Additionally, two full-bridge strain gauges are mounted at the
tower base to measure fore-aft and side-to-side strain, which can be con-
verted into bending moments. All acceleration and strain data are sampled
at 200 Hz. Environmental data, including temperature and humidity, are
recorded at the tower base with a sampling rate of 1 Hz. Furthermore, oper-
ational performance data (SCADA), which encompasses wind speed, nacelle
yaw orientation, rotor RPM, power output, and turbine status, is collected
and sampled at 10 Hz. The model’s data preprocessing steps consist of se-
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lecting the sensors to be included in the monitoring process by analysing
their sensibility to failure events, extracting features from the temporal sig-
nal, normalising the features, and preparing the dataset.

4.1.2 Signal analysis and sensor selection

The data preprocessing starts with analysing and selecting the sensor
for operational and failure identification. The pre-established failures are
the rotor icing event (RI), the flexible coupling of the linear drive of the
collective pitch system (FC), and the aerodynamic imbalance on one blade
(AI). From our previous experience using vibration-based damage detection,
we found that the sensors most sensitive to failure are the ones allocated
close to the anomaly spot. Considering the number of sensors and data to
process that influence time and computational cost, our choice is to work
only with the sensors installed in the nacelle because they are the most
likely to capture changes in the signal due to the failures considered in this
study (RI, FC and AI) and not be masked by other system components,
e.g., tower our boundary condition.

The selected accelerometers GEN_ACC (orange mark), NMF_ACC
(blue mark), and MSB_ACC (yellow mark) capture signals for each event,
including normal operation, as shown in Fig. 4.1. The Aventa dataset pro-
vides three-axis acceleration signals, with the X-axis (side-to-side turbine
motion) and Y-axis (fore-aft turbine motion). Figure 4.1 includes a schematic
representation of the sensor locations in the nacelle. In the acceleration
graphs, black lines represent normal turbine operation, while coloured lines
indicate different failure conditions. To ensure consistency, signals for both
operational states were selected on the same day, minimising the impact of
varying environmental conditions. The top row of graphs shows the x-axis
response of the accelerometer installed on the generator (GEN). From left
to right, it compares normal operation (NO) with FC, RI, and AI failures,
respectively. The middle row presents the X-axis response of the accelerome-
ter on the main shaft bearing (MSB), again comparing NO with FC, RI, and
AI failures from left to right. Finally, the bottom row displays the X-axis
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Figure 4.1: Schematic representation of the turbine and sensors position in the
nacelle. Temporal section comparison of the turbine’s normal operation and oper-
ation with failures: (TOP) sensor GEN NO-FC, NO-RI, and NO-AI placed from
left to right, respectively. (Middle) sensor MSB NO-FC, NO-RI, and NO-AI; and
(Bottom) sensor NMF NO-FC, NO-RI, and NO-AI.

response of the sensor on the nacelle main frame (NMF), with comparisons
between NO and FC, RI, and AI failures. The sensors’ X- and Y-axis signals
were analysed. The curves followed a consistent pattern, with the FC fail-
ure causing a significant drop in amplitude compared to normal operation.
In contrast, the other failure modes showed only minor differences in sig-
nal amplitude. These signal variations can fluctuate daily due to changing
weather conditions.

From this initial analysis, changes in the turbine’s dynamic behaviour
appear to correlate with specific events. For subsequent procedures, only the
generator sensor will be used, as the generator is responsible for converting
the mechanical energy from the rotor blades into electrical energy. The
generator’s performance is critical to the wind turbine’s energy production
and reliability. Monitoring the generator’s vibration response can provide
early signs of potential turbine malfunctions.
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4.1.3 Feature extraction and normalisation

The spectral data comprise four distinct classes: NO, FC, RI, and AI,
where features are derived from the time-domain responses of the generator
accelerometer’s raw signal, shown in Figure 4.1(TOP), along the x- and
y-axis. Since the signal sensitivity displays a close pattern, both directions
are considered and analysed. Fourteen techniques, including spectral and
statistic information, are used as features from the time-domain signal, x(t)
(see subsection 3.2.3).

The turbine data acquisition consists of nine days of normal opera-
tion in a total of 446 measurements, nine days of operation with FC failure
in a total of 1298 measurements, ten days of operation with RI failure in
a total of 539 spectra, and seven days of operation with AI failure sum-
ming 896 measurements. The total features comprised 3179 measurements
and summaries of operation state classification schemas. The features are
grouped in a dataset containing the four operational states and illustrated
in Fig 4.2. Some methods for feature extraction are insensitive to failure,
such as the energy, kurtosis, moment order, and Shannon entropy, which
are discarded in the following normalisation and analysis. Aside from this
issue, the amplitude variation among the features is small, as shown in 4.1.

Table 4.1: Features relative change obtained with the normal operation and failure
condition threshold with and without normalisation.

∆f
Features

Max Min Amplitude Median Variance Energy Signal
rate RMS

Non normalised 0.0056 0.0031 0.0043 0.0014 0.0000 0.003978 0.0026 0.0014
Normalised 0.0305 0.0154 0.0235 0.2126 0.0405 0.0407 0.0235 0.2137
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(a)

(b)

Figure 4.2: Eight feature extractors techniques applied in the raw temporal signals.
(a) Non-normalised ’raw’ features and (b) normalised features. NO is represented
by blue dots, FC by orange dots, RI by yellow dots, and AI by purple dots. The
black dashed-dot line is the threshold of the NO mean value, and the red dashed-
dot line is the reference of the mean value of the failure condition.

Table 4.1 imposes a great challenge for the ML algorithm to find a
pattern and further perform the classification. To cope with this issue, the
proposed damage index for the feature condition extraction incorporates
normalisation as the feature relative change expressed as in Eq 3.9. This
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normalisation method ensures that the features are scaled between zero
and one, preserving their essential characteristics while enabling consistent
feature comparison. Table 4.1 quantifies the distance between normal opera-
tion and failure thresholds applied to the ’raw’ features computed with the
previous techniques, where, in all cases, the ∆f returns minimum values
towards zero. Using the normalised damage index related to the relative
change proposed in Eq. 3.9, we could scale the ∆f values without losing
the intrinsic dynamic behaviour over the observation time and impose the
features’ normalisation between unity and zero. Where close to unity, it is
considered NO and toward zero failure operation.

The selected features for evaluation include the max and min values,
amplitude range, skewness, RMS, variance, energy centre and signal rate.
These features best capture the variations in signals across different oper-
ational states. The eight normalised features are then used to generate the
global dataset, the input data for the unsupervised k-means algorithm. Fig-
ure 4.3 demonstrates the dataset’s tabular and visual organisation, which
involves binary and multiclass classifications of the turbine’s operational
conditions. The RMS and median features are placed on top, and the oth-
ers are grouped at the bottom. For binary classification, three datasets
containing the eight features are prepared, each containing information for
pairs of states: NO and FC (Fig 4.3a), NO and RI (Fig. 4.3b), and NO and
AI (Fig. 4.3c). For multiclass classification, the dataset includes informa-
tion for all four operational states: NO, FC, RI, and AI (Fig. 4.3d). The
black dashed-dot line represents the threshold of the NO condition, while
the red dashed-dot line serves as the failure condition reference threshold.
The NO condition threshold is the reference to determine the normal and
failure data points.
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(a) (b)

(c) (d)

Figure 4.3: Representation of the binary dataset composed of NO-FC condition
(a), NO-RI (b), NO-AI (c), and Multiclass dataset, including the four turbine
operation condition (d). The black dashed-dot line is the threshold of the NO
condition, and the red dashed-dot line is the mean value of the failure condition
reference.

After data reorganisation and analysis, we treated our dataset as con-
taining unknown conditions. We applied the unsupervised K-means model
to evaluate each binary and multiclass case, classifying and clustering the
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samples. The clusters obtained from the K-means algorithm were then used
as inputs to assess evaluation metrics, including the confusion matrix, ac-
curacy, precision, recall, and F-score. These metrics were calculated using
SVM, KNN, NB, RF, DT, and XGB algorithms. The dataset was split into
75% for training and validation and 25% for testing. The training set was
further divided, with 25% of it allocated for validation, resulting in 56.25%
of the total data used for training, 18.75% for validation, and 25% for test-
ing. A stratified sampling approach ensured consistent fault distribution
across all subsets, minimising sample bias.

The explicit description of the datasets used for training, testing and
validation is described in Table 4.2. For the binary classification tasks, data
splits were applied uniformly: NO-FC included 981 samples for training,
436 for testing, and 327 for validation; NO-RI had 726 for training, 323
for testing, and 243 for validation; and NO-AI comprised 545 for training,
243 for testing, and 182 for validation. The multiclass scenario covered all
turbine operational states (NO, FC, RI, and AI). The dataset consisted
of 1,751 training samples, 779 testing samples, and 584 validation sam-
ples. This data-splitting strategy ensures that each fault type is adequately
represented, providing a robust and accurate evaluation of the model’s per-
formance.

Table 4.2: Explicit description of the datasets used for training, testing and vali-
dation.

Classification Cases Training Test Validation

Binary
NO and FC 981 436 327
NO and RI 726 323 243
NO and AI 545 243 182

Multiclass NO, FC, RI and AI 1751 779 584

4.1.4 Results and discussion

Using the K-means algorithm, the dataset was grouped into classes and
visualised in scatter plots to illustrate pattern recognition and cluster iden-
tification. This representation enabled us to observe correlations and recog-
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nise data patterns from normal and fault operations. The distinct patterns
emerging in each category indicate how different faults impact the turbine’s
dynamic response, highlighting the most informative variables for each con-
dition. Variables with minimal overlap between normal and fault conditions
are particularly favourable for machine learning algorithms, which can in-
fluence these distinct patterns to classify and differentiate the operational
states. These feature clusters indicate that these variables exhibit consis-
tent grouping and dispersion patterns, making it easier to identify each
operational condition.

Unsupervised classification and clustering using K-means

In binary classification, the dataset is divided into two classes, normal
and failure operation, using the k-means algorithm. The three NO-AI, NO-
RI, and NO-FC classifications compare the normal state (NO) and a specific
type of fault (AI, RI, or FC). The k-means algorithm utilises the com-
bined information from all provided features to cluster attributes according
to identified labels. Thus, increasing the number of features enhances the
pattern recognition among the features and classification accuracy. Each
feature is presented separately for easy visual identification and analysis.
Therefore, the classification assumes the combinations of the eight features.

Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show scatter plots that highlight
the correlation between features in the binary classification, where the model
identifies only two types: normal operation and failure. This statistical pat-
tern recognition analysis helped us identify patterns and clusters in the
dataset. The blue dots indicate the normal operation, the orange dots FC
failure, the yellow dots RI failure, and the purple dots AI failure. The fea-
tures representing the NO state are concentrated in higher graphics values
that tend to unity. This indicates that, under normal conditions, the sys-
tem tends to cluster at high levels for eight features used in the analysis. In
contrast, lower values could indicate more irregular or unstable behaviour,
typical of fault conditions, as shown in Fig. 4.3.

Features are estimated using signals from the GEN sensor’s Ys- and
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Zs-axis directions. Figures 4.4, 4.6 and 4.8 show the features’ correlation
with the Y s direction. The data dispersion concentrates more on a few fea-
tures, demonstrating clearer groupings and defined correlations. In the Zs

direction, represented by Fig. 4.5, 4.7 and 4.9, there is greater dispersion
in some features, indicating less evident separability or correlation for these
variables. These feature clustering patterns provide valuable insights into
the system’s behaviour and help distinguish the turbine’s operational condi-
tions. In this case, K-means clustering classification differentiates effectively
between normal (NO) and fault states in certain features. The feature data
points cluster around a normalised value range for each operational failure.
This indicates that K-means can accurately group the data and recognise
patterns conducive to reliable classification and robust machine learning
model evaluation.

Figure 4.4: Correlation scatter plots between NO and FC failure obtained for the
eight normalised features, direction Ys.
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Figure 4.5: Correlation scatter plots between NO and FC failure obtained for the
eight normalised features, direction Zs.

Figure 4.6: Correlation scatter plots between NO and RI failure obtained for the
eight normalised features, direction Ys.
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Figure 4.7: Correlation scatter plots between NO and RI failure obtained for the
eight normalised features, direction Zs.

Figure 4.8: Correlation scatter plots between NO and AI failure obtained for the
eight normalised features, direction Ys.
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Figure 4.9: Correlation scatter plots between NO and AI failure obtained for the
eight normalised features, direction Zs.

The K-means algorithm identifies four clusters corresponding to NO,
FC, RI, and AI operations in the multiclass classification and organises the
dataset in the response cluster. These clusters allow for further classifica-
tion validation through evaluation metrics. Figures 4.10 and 4.11 present
scatter plots of the features clustered by K-means, each class represented by
a distinct colour, enabling prompt identification and evaluation of overlaps
of the operational state. In the Y s-direction (Fig. 4.11), the cases show less
dispersion in some features. Certain variables in the Zs-direction (Fig. 4.10)
separate the normal state and the fault types with greater distributions. In
both directions, there is an overlap between fault types, suggesting that
these variables alone may not fully distinguish specific failures. This indi-
vidual feature analysis highlights patterns, but when classification models
are applied, features are combined with operational classes with accuracy
and quantification of classification metrics. Although some features help
differentiate the normal condition from specific fault classes, an effective
separation between conditions generally requires a combination of multiple
characteristics.
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Figure 4.10: Correlation scatter plots between NO, FC, RI, and AI failure for the
eight normalised features, direction Ys.

Figure 4.11: Correlation scatter plots between NO, FC, RI, and AI failure for the
eight normalised features, direction Zs.

In summary, the results of the dispersion correlation diagrams are anal-
ysed considering two distinct measurement directions associated with the
turbine’s dynamic responses: the Ys-axis direction, which represents the
lateral vibration (side-to-side vibration) of the turbine, measured by the
sensor, and the Zs-axis direction, which corresponds to the vibration along
the X-axis of the turbine, characterising the longitudinal vibration (fore-aft
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vibration). These two directions allow a more detailed and segmented inves-
tigation of the turbine’s dynamic characteristics under different operating
conditions. In all cases, the normalization process helps identify the opera-
tional conditions, as it was pre-established that unity represents normal op-
eration and values approaching zero indicate fault. The K-means algorithm
organizes the clusters, providing straightforward identification, validated by
the feature dataset behaviour observed in Fig. 4.3. The FC feature exhibits
the greatest dispersion, followed by AI, RI, and NO, as clearly shown in the
dispersion diagrams and features observation (Fig. 4.3a- 4.3d).

Operational assessment

The clusters generated by the unsupervised K-means serve as input for
various classification machine learning algorithms, including kNN, SVM,
DT, RF, Naive Bayes, and XGB. These algorithms perform the final clas-
sification based on the initial unsupervised clustering, providing outputs
that include confusion matrices and performance metrics. The selection of
hyperparameters is based on the investigations in [143, 38], which speci-
fied optimal configurations for this assignment. For SVM, a linear kernel
was used with a penalty parameter of C=100, a one-versus-one multiclass
strategy, and a 1e−3 tolerance. For kNN, the number of neighbours was set
to kn = 3, using the Euclidean metric, uniform weights, and leaf size 30.
In both the RF and DT algorithms, the number of trees was fixed at 100,
with a maximum depth of 3 and a Gini splitting criterion. The Naive Bayes
algorithm employed a Gaussian-NB model, and for XGB, the XGBClassi-
fier model was applied. These configurations achieved high accuracy in fault
classification and demonstrated robustness across various experimental sce-
narios. Accordingly, this study adopts these hyperparameter configurations
to optimise operation state accuracy and enhance the performance analysis
of the wind turbine.

Table 4.3 presents the performance of machine learning models applied
to the Ys- and Zs-axis directions in binary classification tasks (NO-FC,
NO-RI, and NO-AI) evaluated through cross-validation and metrics such
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as accuracy, precision, recall, and F1-score. Overall, the Y s direction out-
performs Zs in most cases, which indicates that the FORE-AFT vibration
plane might be more sensitive to the damages.

Among the ML methods used for operation classification, the SVM
algorithm achieves excellent metrics, reaching a value of 1 across all evalu-
ated measures (accuracy, precision, recall, and F1-score) in the three binary
classification scenarios. The performance of SVM is especially remarkable
in NO-RI, where it attains peak scores. Although KNN, NB, DT, RF, and
XGB also show strong metrics results in Y s, with less pronounced varia-
tions, SVM stands out, offering greater interpretation and precision. This
analysis highlights the critical importance of considering the direction of the
data when training classification models, as the orientation can significantly
influence performance. Confusion matrices are generated for all algorithms,
but based on the results, the SVM in the Y s direction is selected for a de-
tailed analysis across the three scenarios. This selection allows for a focused
presentation, particularly on the educational aspects of the findings, given
the extensive number of graphical results obtained.

Table 4.3: Performance metrics of the ML algorithms SVM, KNN, NB, RF, DT,
and XGB for binary classification in directions Y s and Zs.

Performance Metrics Cases
SVM KNN NB RF DT XGB

Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs

Cross-Validation
NO-FC 0.993 0.995 0.989 0.989 0.905 0.969 0.991 0.989 0.991 0.982 0.988 0.985
NO-RI 1.000 1.000 0.997 0.993 0.914 0.927 0.994 0.994 0.985 0.982 0.985 0.979
NO-AI 0.985 0.996 0.978 0.978 0.932 0.956 0.982 0.987 0.978 0.971 0.976 0.972

Accuracy
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

Precision
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

Recall
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

F1-Score
NO-FC 0.998 0.988 0.991 0.988 0.924 0.956 0.995 0.986 0.993 0.972 0.998 0.984
NO-RI 1.000 1.000 0.997 0.988 0.941 0.926 0.994 0.988 1.000 0.975 0.994 0.991
NO-AI 0.996 0.983 0.983 0.975 0.947 0.955 0.979 0.984 0.971 0.979 0.967 0.975

The confusion matrices presented in Figure 4.12 illustrate the binary
classification executed by the SVM algorithm. The model demonstrated
excellent classification in the NO-FC case, with 268 correct classifications
in the NO class (61.47%) and 167 in the FC class (38.30%), recording only a
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minimal error. In the NO-RI scenario, the performance was also satisfactory,
with 192 correct classifications in the NO class (59.44%) and 131 in the RI
class (40.56%), without any false positives. Finally, in the NO-AI case, the
model achieved 159 correct classifications in the AI class (65.43%) and 83
in the NO class (34.16%), indicating a slight drop in performance compared
to the other scenarios, possibly due to the higher complexity or differences
in the distribution of the data for these classes.

Figure 4.12: Confusion matrix of binary operational classification for NO-FC, NO-
RI, and NO-AI cases using the Y s-axis direction data.

The performance metrics of the SVM, KNN, NB, RF, DT, and XGB
algorithms for a multiclass classification task are summarised in Table 4.4.
The evaluation is based on cross-validation, accuracy, precision, recall, and
F1-score, comprehensively assessing each algorithm’s effectiveness in the Y s

and Zs directions. SVM shows the best-performing model overall, achieving
superior results in the Zs direction. KNN, NB, and RF also showed con-
sistent performance, with the Zs direction generally outperforming Y s. In
contrast, the DT and XGB models demonstrated a slight advantage in the
Zs direction, highlighting the importance of considering data orientation to
optimise algorithm performance. Based on SVM’s exceptional results, it will
be used for further analysis, including the evaluation of confusion matrices
in the Zs direction, where it achieved the highest performance.
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Table 4.4: Performance metrics of machine learning algorithms (SVM, KNN, NB,
RF, DT, XGB) for multiclass classification in directions Y s and Zs.

Performance Metrics
SVM KNN NB RF DT XGB

Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs Ys Zs
Cross-validation 0.986 0.990 0.967 0.975 0.865 0.909 0.972 0.975 0.951 0.964 0.954 0.956

Accuracy 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976
Precision 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976

Recall 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976
F1-Score 0.987 0.995 0.961 0.961 0.879 0.928 0.979 0.977 0.963 0.955 0.982 0.976

Figure 4.13: Confusion matrix of multiclass SVM operational classification based
on Zs-axis direction data.

Figure 4.13 presents the confusion matrix that demonstrates the per-
formance of the SVM model in classifying the AI, FC, NO, and RI classes.
The AI class had 199 examples correctly classified as AI (25.55%), with no
false positives, indicating that the model accurately identified most of the
examples from this class. In the FC class, 136 examples were correctly clas-
sified as FC (17.46%), with a small error of 2 FC examples classified as NO
(0.26%), suggesting a slight difficulty distinguishing between FC and NO.
For the NO class, 237 examples were correctly classified as NO (30.42%),
with only one misclassification of NO as RI (0.13%), showing good accu-
racy. In the RI class, 203 examples were correctly classified as RI (26.06%),
with one error of RI being classified as NO (0.13%). The matrix suggests
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that the SVM performs well overall, with minimal errors and high accuracy.
However, the model showed minor errors between the NO and FC classes
and between NO and RI.

Final remarks

The SHM-ML subroutine presented by Al 3 was applied to monitor
and assess four operating conditions of the Aventa wind turbine through a
structured process involving eight steps, including data acquisition, process-
ing, feature selection, normalisation, data splitting, unsupervised clustering,
and subsequent machine learning classification and model evaluation. Eight
of fourteen feature extraction methods were sensitive to the different oper-
ational failures that the future are input in the unsupervised K-mean for
clustering and dataset built for classification and metric evaluation.

In binary classification, SVM emerged as the most robust method,
achieving perfect metrics with values equal to 1.0. This reflects its excep-
tional ability to distinguish between normal conditions and faults across dif-
ferent data orientations, particularly emphasising the Ys direction. Analysis
of the confusion matrices further validated the reliability of the SVM model,
minimizing classification errors and false positives while providing high pre-
cision in structural monitoring. While other algorithms, such as kNN, Naive
Bayes, and XGB, also demonstrated commendable performance, SVM stood
out for its consistency and stability in results. In multiclass classification,
which involved identifying multiple operational states and damage levels,
SVM delivered the best performance, excelling in accuracy and its capacity
to discriminate between classes. The Zs direction proved to be the most
suitable for this task, exhibiting the highest precision and the best capabil-
ity to differentiate between the various damage levels. Overall, SVM proved
to be the best-performing model for binary and multiclass fault detection,
demonstrating robustness and effectiveness in monitoring and diagnosing
operational conditions of wind turbine components.
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4.2 Case II: Detection of loosening torque in bolted structure

This case study builds upon existing work in bolted joints used for
assembly structure analysis, particularly in recognising and detecting loos-
ening torque from a structure’s dynamic response. The ML classifiers have
been designed to withstand variabilities in raw data, in addition to noise
variations, considering the influence of assembling and disassembling the
bolted structure during experimental tests, as documented in [159]. To val-
idate the method’s applicability, this case presents an implementation of
Algorithm 1 from Section 3.1. The present approach simplifies the analysis
by eliminating the need to evaluate the most sensitive extraction features,
introducing the FRAC concept in obtaining the damage index, which plays a
crucial role in our algorithm’s methodology. As a result, the main contribu-
tion of the ML algorithm architecture for pattern recognition and detection
of loosening torque in bolted joints lies in its utilisation of spectral raw sig-
nals from experimental tests. The test results show that the algorithms can
classify satisfactorily in all three frequency band conditions. These results
were published in [38].

4.2.1 Experimental benchmark

Bolt loosening detection from vibration data is challenging due to vari-
ability and nonlinear effects from the contact interface in bolted joints.
Therefore, this study proposes a data-driven strategy to detect loosening
bolts from experimental vibration signals. In the experimental set available
in Teloli et al. [275], the authors consider a physical system consisting of two
bolted beams (dimension 370 × 30 × 2 mm) in a cantilever and joint lap con-
figuration connected by three bolts with controlled tightening, as shown in
Fig. 4.14. The experimental apparatus consists of a load cell (PCB288D01),
an electromagnetic Modal Shop shaker (Model K2004E01), a 3D scanning
laser, and NI9234 hardware for data acquisition. The excitation spectrum
considered was a white noise Gaussian input with the amplitude levels of
1m/s2, 4m/s2, 8m/s2, and 12m/s2 RMS values induced by the shaker at
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the clamped end. The tightening torques applied on the beam’s bolts were
10 cNm, 20 cNm, 30 cNm, and 80 cNm.

The tightening torques were measured with a Lindstorm MA500-1
torque wrench, and the force acquired with a Futek LTH300 donut-load cell
was performed after each experimental run. The experimental data-driven
consists of the frequency response obtained by dividing the velocity mea-
sured at the beam’s free edge by the acceleration measured at the clamp.
Three-hundred-sixty response samples were acquired considering all differ-
ent excitation spectrum amplitude levels and variability in assembling the
jointed structure.

Measurement Point

Orion Beam

Lap-Joint

Shaker

Accelerometer

Clamp

(a) Experimental setup (b) Schematic diagram

(c) Transmissibility (d) Zoom

Figure 4.14: Physical and schematic drawing of the experimental bolted beams
presented in [275, 38].

Figure 4.14 (c) displays four experimental FRFs samples for each torque
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and base acceleration level measured over a frequency range from 0 to 1900
Hz, in a total of 20 curves printed in the figure. A different colour line
represents the FRF of each torque. The continuous line represents a base
acceleration level of 1 m/s2, the dashed-dot line represents an acceleration
level of 4 m/s², the dashed line represents an acceleration level of 8 m/s²,
and the dotted line represents an acceleration level of 12 m/s². The torque
loosening induces clearer changes in higher mode shapes, for instance, on
the fifth and sixth modal shapes, which can be more evident as the exci-
tation amplitude levels increase. Both noise and variability are present in
the spectral signal across the entire frequency range. When considering the
whole FRF signal in the damage index calculation, the estimation of torque
loosening can induce a false positive in the prediction and diagnostic be-
cause one considered all signal power densities, including the signal in low
frequencies, less influenced by the damage. Therefore, the truncated signal
ranging from 1200 to 1900 Hz was assumed in the DIs estimation (Fig. 4.14
d). This frequency band was the most affected by the torque loosening.

The structure’s vibration signature has been used to detect, locate
and quantify damage and anomalies in a structure from changes in its dy-
namic characteristics [168]. Among the methods that employ the dynamic
response, the DI is a metric that correlates a system signal in different
states. The reference signal, usually derived from the system considered
an undamaged state, correlated to the one provided by the system under
the presence of discontinuity or damage [181]. Various DI approaches have
been developed to extract signal features in different domains, aiming at
identifying structural damage using an indicator that describes the dam-
age as explored in [276, 277, 278, 279]. The DIs are associated with the
estimation techniques for damage quantification and reveal important in-
formation about the structural health condition. The literature describes a
range of DI developed over time. The Frequency Response Assurance Crite-
rion (FRAC) is a damage index representing the correlation between tested
frequency responses.
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4.2.2 Feature selection and pattern recognition

The ML algorithm is expected to classify the damage state correctly.
In this case, DIs close to unity are considered healthy states of the structure
for torques of 80 and 60 cNm. In contrast, torque losses are associated with
torques of 30, 20, and 10 cNm, indicating structural damage. The classifi-
cation identifies the structure condition and quantifies it as Healthy (80),
Healthy (60), Damage (30), Damage (20), and Damage (10). The DIs are
calculated by considering the whole signal spectrum, the signal truncated
comprising 5th and 6th mode shapes, and the signal covering only the fifth
and sixth modes separately.

From data processing and estimating DIs, two attribute datasets (DI1

and DI2), each consisting of 180 samples, were generated based on the se-
lected FRAC DI observations. Having the dataset pre-processed, DI cluster-
ing was carried out using the K-means algorithm with a value of K = 5 (for
K representing the number of classes) to identify clusters within unlabeled
data. Consequently, an object target dataset was created, comprising 180
samples belonging to one of the 5 labelled classes. Further, the samples were
randomly divided, with 70% of the data allocated for training and 30% for
testing, as defined in Table 4.5. Each classifier was assessed using a 5-fold
cross-validation procedure to enhance training accuracy, accomplished by
randomly partitioning the training dataset into five distinct subsets.

The dataset grouped in classes by the K-means is shown using a scat-
ter plot to characterise the clustered points, enabling us to observe the
correlation in two-dimensional space and recognise a pattern of the torque
loosening. Figures 4.15a show the correlation between the two attributes
of features (DI1 and DI2). The cloud points show an unclear classification
of torque loosening, as the points cluster in the range of DIs considered
a healthy state of bolted beams. Bolt loosening most affects the dynamic
response in higher frequency modes; therefore, by using the whole response
signal spectrum, the influence of modes in low frequency intends to dom-
inate the signal power spectrum because they have higher amplitudes. In
this case, the torque loosening identification through the DI is compromised.
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Therefore, whether the ML algorithm can correctly classify the damage is
unclear. All datasets have a considerable correlation, which can induce mis-
leading classification and false diagnosis identification.
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Figure 4.15: Correlation scatter plots of between features DI1 and DI2 dataset
obtained from five different classes of torques in the frequency ranges of (a) 10 to
1940 Hz, (b) 1250 to 1940 Hz (5th∼6th mode), (c) 1250 to 1550 Hz (5th mode),
and (d) 1740 to 1940 Hz (6th mode).

For torques of 80 and 60 cNm, the FRAC DI varies between 1 and 0.9,
considered a healthy structure state. In contrast, torque losses are associated
with torques of 30, 20, and 10 cNm, with the DIs estimated from 0.8 to
0, indicating torque loosening. Therefore, by following the DI values, the
multiclass dataset can be used to identify the structure state and quantify
the severity of the damage from a pattern in the DI values.

Assuming only part of the signal is truncated in the frequency range of
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the modes’ shapes most affected by the torque loosening, the identification
turns more consistent. The data correlation is stronger for the sixth mode
than the fifth mode shape because of the small change in the frequency re-
sponse due to the torques from 80 to 30 cNm. Figure 4.15b shows the data
set pattern classification for the signal containing information of the fifth
and sixth mode shapes and the correlation between the features attributes.
In this case, the classification in healthy and damaged states becomes more
evident as the torque loosens. The multiclass dataset can recognise the pat-
tern of the toque loosening through the calculated FRAC DIs. Figures 4.15c
and 4.15d include information on the mode fifth and sixth, respectively. For
each torque level, the DI data points cluster correctly around the range cor-
responding to the normalised value of DI, indicating that the dataset follows
a torque loosening pattern, which can lead to a good classification of the
ML algorithm.

Table 4.5: Torque values, labelled classification, train, and test data splitting as-
sociated with samples number identified healthy or damaged.

Classification/Regression
Torque
(cNm)

Frequency
range (Hz)

Train dataset Test dataset
Healthy Damaged Total Healthy Damaged Total

80,60,30,
20,10

1250∼1550
(5th∼6th modes) 60 66

126
26 28

541740∼1940
(5th mode) 69 57 30 24

1740∼1940
(6th mode) 59 67 25 29

Multiclass label classification (torque): Healthy(80), Healthy(60), Damaged(30),
Damaged(20), Damaged(10)

The approach for assessing torque loosening based on spectrum sig-
nal can effectively capture the intricate dynamics and torque loss processes
within bolted joints across varying torque levels. As torque drops, DI con-
sistently decreases in most scenarios. Nevertheless, the FRAC method con-
sistently outperforms others, indicating a clear trend of decreasing values
with reduced torque. Therefore, adopting DI as a normalisation factor in
the vibration dataset becomes the input for unsupervised and supervised
machine learning algorithms. Consequently, due to DI’s normalisation effect
on the data, the range of based motion acceleration excitation is dissociated
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from the subsequent analysis and estimation. In our context, using nor-
malised data is one of the advantages of our algorithm, which lies in the DI
procedure. However, a limitation of our proposed algorithm in this paper is
that it assumes raw data instead of DI. We are currently exploring ideas to
address this issue, but they are beyond the scope of this paper.

4.2.3 Machine-Learning techniques for bolt-loosening detection

Bolts have the function of connecting and maintaining stability between
two pieces that need to be joined. However, this fixation might only be guar-
anteed in parts of the structure’s lifespan, a problem engineering systems
face. It is common for the ends joined by the bolts to loosen over time
due to external vibrations, dynamic loading, or thermal variations. Bolted
joint loosening is damage-like and modifies the connectivity between the
components of the structure. Predicting torque losses is essential and helps
engineers create control strategies for torque tightening. Based on actual
torque data, it is possible to train a classifier model that predicts whether
torque loss occurs for a bolted joint and subsequently identifies whether
there is damage to the structure.

Machine learning algorithms can be employed in system monitoring
using the dataset related to the loss of torque problem. Machine Learning
is an automated process that extracts information from data based on a
pattern learned through different algorithms. It utilises the learned patterns
to predict future data or perform other types of decision-making. This work
predicts the state of the bolted connection with unsupervised-supervised
learning from the bolted beams’ vibration response data-driven. The ML
algorithm quantifies the torque loosening using a regression algorithm under
different torque conditions as input. The learning approach is divided into an
unsupervised-supervised classification and regression problem, as the data
has defined attributes. The ML data input is the DIs, and the target variable
will be the information on bolt loosening and indicate the influence of the
independent variable. Thus, we intended to obtain a previous classification,
determine which unclassified category the data belongs to, and then quantify
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the torque loosening.
The classifiers algorithm used are the unsupervised K-means to cluster

the data and supervised Naive Bayes, Decision Tree (DT), Random Forest
(RF), K-Nearest Neighbours (KNN), Support Vector Machine (SVM), and
extreme Gradient Boosting (XGBoost) to detect the torque loosening. Gen-
eral theoretical details on the machine learning techniques used here are
presented in section 3.3.3. Each algorithm has hyperparameters that must
be configured and tested for optimal performance in application cases. In
the case of SVM, a linear kernel function was used, and a grid search was
conducted to determine the penalty parameter, assumed as C = 10. For
KNN, the number of neighbours is set to k = 3, and the metric is defined as
the Euclidean distance. The function weights are uniform, meaning that all
points in each neighbourhood are equally weighted, and the leaf size, which
affects query construction and speed, is set to 30. For RF and DT, the num-
ber of trees in the forest is 100, and the maximum depth is restricted to 3.
The minimum sample split is 2, indicating the minimum number of samples
required to split an internal node. The minimum sample leaf represents the
training samples on each of the right branches, and the minimum sample
leaf values are set to 1. The Max features value is set to ’auto’, representing
the number of features considered when searching for the best split, and
the criterion used is the Gini index. In the case of XGBoost, the objective
is assumed as softmax for multiclass classification using the softmax objec-
tive. The learning rate is set to 0.3, which means that each weight in all
trees will be multiplied by this value, and the maximum depth is set to 6.
In the Naive Bayes classifier, the Gaussian-NB case was selected. Table 4.6
shows the hyperparameters selected for each ML algorithm implemented in
this paper. All algorithms were applied using the open-source Scikit-learn
library in Python.

After the machine learning algorithm completes its estimation, it be-
comes crucial to assess the stability and accuracy of the model. This valida-
tion process involves confirming the quantified relationships between vari-
ables, which can be accomplished by examining metrics such as accuracy,
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Table 4.6: Hyperparameters assumed for each ML algorithms.

Classification Algorithm Hyperparameters

K-Means
Number of clusters = 5; Initialisation = k-means++;
Number of times the algorithm is run with different centroid
seeds = 20.

SVM Kernel: Linear; C = 10.
K-NN Metric: Euclidean distance; Number of neighbours: 3.
Naive Bayes Gaussian

Ramdon Forest
Number of forest trees = 100; Max_depth = 3;
Minimum division = 2; Minimum value of sample sheet = 1;
Criterion = Gini Index.

Decision Tree Criterion = Gini Index; Splitter = ’best’; max_depth = 3.

XGBoost Objective =’multi:softmax’; max_depth = 6;
learning rate = 0.3.

score, precision, and recall [241, 240]. However, it’s important to note that
these metrics primarily reflect the ML model’s performance on the data it
was trained on. Therefore, the ML model’s cross-validation using a separate
dataset is necessary to ensure that it successfully captures the underlying
patterns in the data, and a reliable validation set indicates a model with low
bias or variance. In the damage assessment, the validation and the cross-
validation of the ML algorithms are explored. The evaluation metrics of the
ML algorithm are addressed to compare the damage detection capability
through their accuracy and the confusion matrix. Accuracy close to 100% is
considered a good performance. In all cases presented in this paper, the ML
model exhibits excellent performance, as evidenced by a standard deviation
of 5% in the cross-validations obtained through five different cluster data.

Initially, an unsupervised clustering algorithm, K-means, was applied
to cluster the data, which was divided into five classes. From the samples
obtained through the selection of attributes, the algorithms were evaluated
by comparing metrics for the classification algorithm in the training and
test sets. The idea was to compare the classification metrics, considering
the damage index calculated from the FRFs and torques as a characteristic.
Therefore, the studies on the dataset investigate the feasibility and accuracy
of the six supervising machine learning on the performed classification. The
dataset includes five torque identification classes (see Table 4.5), with two
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record attributes as input variables or predictors. Loosening torque identifi-
cation, considered as damage, is performed with 180 samples separated into
three different assemblies and divided into training and testing data. The
classification method employed here is ”one versus one” [280], where one
multiclass classification problem turns into ten binary class classification
problems. The metrics for multiclass classification are shown in Table 4.7
for the torque estimation using the 5th∼6th mode shapes, Table 4.8 only
with the 5th mode, and Table 4.9 with the 6th mode shape. The estimation
using the whole frequency band is discarded because of the low accuracy in
the DI grouping.

Table 4.7: Comparison between metrics of experimental test ML algorithms for
FRF data (5th∼6th mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 97,8 97.2 94.4 98.9 98.9 98.9

Accuracy 98.1 98.1 85.1 100 100 90.7
Precision 98.1 98.1 85.1 100 100 90.7
Recall 98.1 98.1 85.1 100 100 90.7

F1-Score 98.1 98.1 85.1 100 100 90.7

Table 4.8: Comparison between metrics of experimental test ML algorithms for
FRF data (5th mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 98.3 98.9 98.3 99.4 100 99.4

Accuracy 98.1 98.1 100 100 100 100
Precision 98.1 98.1 100 100 100 100
Recall 98.1 98.1 100 100 100 100

F1-Score 98.1 98.1 100 100 100 100

All torque classification performed with the three signals present cross-
validation ranging from 94.4% to 100%, and the accuracy, precision, recall
and F1-score range from 88.9% to 100%. Torque estimation using the signal
from the 5th mode shape presents the higher metrics, showing the efficiency
of the algorithms in detecting the most specific conditions for the health
and damage state of the bolted beam. The results consistently demonstrate
similar performance, yielding accurate predictions on previously overlooked
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Table 4.9: Comparison between metrics of experimental test ML algorithms for
FRF data (6th mode).

Performance Metrics SVM KNN NB RF DT XGB
Cross-validation 96.7 97.2 97.8 97.8 94.4 95

Accuracy 98.1 98.1 92.6 98.1 94.4 88.9
Precision 98.1 98.1 92.6 98.1 94.4 88.9
Recall 98.1 98.1 92.6 98.1 94.4 88.9

F1-Score 98.1 98.1 92.6 98.1 94.4 88.9

datasets. The XGBoost performed K-folds (Kf = 5) estimation, where 88%,
95.6%, 94.4%, 97% and 100% were achieved. The cross-validation of 95%
given by the XGBoost is estimated by the mean value of the five validation
preview tests. It indicates a high level of consistency in the model’s perfor-
mance across different cross-validation iterations, with minimal fluctuations
in its learning behaviour. Cross-validation is a valuable tool for evaluating
the algorithm’s effectiveness by assessing its performance on various data
splits. It provides a robust understanding of how the model behaves regard-
ing overfitting. Additionally, the other metrics support the model’s strong
classification performance.

The confusion matrix [240] is also vastly employed to verify the data
classification, which provides the correct configurations of the classified
data. It minimises the error in the damage, and the model’s successes of-
fer a comparison between actual and predicted values, where the labels are
considered ”Positive” and ”Negative” [241]. In the case of the torque loss
problem, the matrix elements are characterised as true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The ma-
trix’s main diagonal values show how many correct model predictions there
are for each class. In this application, the confusion matrix details the ML
classifiers’ performance in correctly labelling the data and predicting the
severity of the loosening torque, which is divided into five classes: damaged
or healthy. Therefore, the confusion matrix represents five rows indicating
true classes and nine columns representing the models’ predictions. Fig-
ures 4.16-4.18 show the confusion matrices of the multiclass classification
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for torque losses for the truncated signal between the 5th and 6th mode
shape. The results indicate that a smaller number of samples were misclas-
sified. Most algorithms had only a sample misclassified, representing 1.85%
of the total samples used, in this case, the confusion matrix shows the cor-
rect and incorrect predictions on each class. For example, by looking at all
the values in row four (Figure 4.16a), it can be inferred that, out of four
samples, the model predicts that three samples belong to class 20-damage
(correct prediction) and one sample belongs to class 30-damage. Overall,
the result for a multiclass classification using ML algorithms is satisfactory
for this specific task using the dataset for bolt loosening identification. For
each class, it is possible to evaluate the model’s performance by looking at
the confusion matrix in detail.
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Figure 4.16: Confusion matrix of Multiclass classification of six ML techniques in
the 5th∼6th mode. The values in blue blocks indicate correctly classified points,
whereas those in pale blue blocks indicate misclassified points.
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(f) XGBoost

Figure 4.17: Multiclass classification confusion matrix of six ML techniques for
the 5th mode.
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Figure 4.18: Multiclass classification confusion matrix of six ML techniques in the
6th mode.
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Final remarks

The study demonstrated the effectiveness of SHM-ML techniques for
detecting bolt loosening torque in bolted joints using vibration-based meth-
ods. Supervised classification models achieved high accuracy in identifying
damage states. The next section focuses on expanding the dataset, regression
techniques, and integrating virtual sensor data augmentation into the SHM-
ML to enhance the reliability and applicability of the proposed methodology
for continuous structural health monitoring of structure bolted joints.

4.3 Case III: Quantification of loosening torque in bolted struc-
tures with virtual sensor integration

Current research on bolt torque loss detection using ML and DL tech-
niques is relatively advanced. However, a significant gap remains in applying
ML-based condition assessment methods incorporating data augmentation,
uncertainty quantification, and raw vibration spectra acquired from bolted
structures for torque loosening monitoring. The uncertainty associated with
the assembly system affects the dynamic response and propagates through
the monitoring process. Addressing this issue demands a robust technique
for torque loosening assessment that also accounts for this epistemic uncer-
tainty propagation, minimizing false indications and reducing false-positive
and false-negative detections while incorporating variability errors into the
operational evaluation process. This case study proposes a data-driven ML-
based condition assessment model to estimate bolt torque loosening. Data
augmentation uses a virtual sensor that fuses physical and synthesized data,
enhancing dataset quality and improving ML efficiency. To validate the ap-
plicability of the method, this case presents an implementation of Algo-
rithm 2 from Section 3.1. The experimental dataset provided in [159] is a
physical system consisting of two beams bolted in a cantilever and joint lap
configuration, connected by three bolts with controlled tightening torque.
The system complexity characterises the experimental data due to vari-
ability, nonlinear effects, and uncertainties associated with sub-component
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[140, 281, 279]. The main contributions of this study are: i) Developing
a novel data-driven ML architecture for torque loosening estimation in
bolted systems, addressing intrinsic system uncertainties; and ii) Proposing
a virtual sensor that provides indirect feature measurements and expands
the dataset volume. The ML architecture integrates regression algorithms
with dedicated data augmentation techniques. The condition assessment of
torque loosening detection and quantification ML model is based on seven
steps outlined in Figure 4.19. The methodology strategy includes process-
ing the existing data provided from vibration tests, feature extraction, data
augmentation strategies through the virtual sensor, feature selection, and
regression algorithms for torque loosening and uncertainty quantification.
This approach aims to enhance the accuracy and reliability of monitoring
and promote proactive maintenance on bolted systems.

Figure 4.19: Flowchart of a semi-supervised ML model for bolt torque loosening
estimation and monitoring (Source: own study).

4.3.1 Feature extraction using damage indices

Feature extraction transforms measured signals into features, also known
as attributes, which serve as inputs to a learning algorithm. This process
involves changing the original data variables to obtain new forms of nor-
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malised data variables [282, 59]. Typically, the reference signal is derived
from the system in an assumed health state, compared to the signal pro-
vided by the system in the presence of discontinuities or damage [181]. The
experimental data consists of the transmissibility responses under differ-
ent tightening torque values, and the DIs are employed as feature extrac-
tors.Figure 4.20 presents the results of the six damage indices calculated
and normalised from the vibration signals for different torque levels and
frequency bands. The DIs are computed from the entire signal and trun-
cated in a frequency range to reach the 5th to 6th mode shape. The FRAC,
FAAC, AIGSC, AIGAC, MDI, and RDI indices show a slightly decreasing
trend with decreasing torque for both signal ranges.

Figure 4.20a considers the entire transmissibility signal (0∼2000 Hz)
used in the DIs estimation. Except for MDI, all methods maintain a value
between 0.95 and 1 for torque levels below 50 cN/m, after which there is
a slight decrease, reaching a DI of 0.7. The narrow range of DI variation
across torque levels suggests the low sensitivity of these methods to torque,
as lower mode shapes are unaffected by loosening, as shown in Fig. 4.14(d).
Figure 4.20b presents DIs calculated over a truncated frequency range in the
4th∼6th modes, from 600 to 2000 Hz. The AIGSC and AIGAC indicators
exhibit low sensitivity, maintaining constant DI values without significant
reduction as torque decreases, indicating their ineffectiveness in damage
detection for this analysis. The RDI method shows a DI close to 1 up to 50
cN/m, followed by a gradual decrease with torque, though less sharply than
other methods, indicating low sensitivity. In contrast, FRAC, FAAC, and
MDI demonstrate greater sensitivity, gradually reducing DI as torque values
decrease. Figure 4.20c shows results for the frequency range between the
5th and 6th modes, from 1250 to 2000 Hz. Similar to earlier observations,
the AIGSC, AIGAC, and RDI indicators are insensitive to torque levels,
while FRAC, FAAC, and MDI gradually reduce as torque decreases. The
higher mode shapes in this range are more sensitive to torque loosening,
making these indicators more effective for detecting changes at lower torque
levels. The correlation between torque loss and the FRAC, FAAC, and MDI
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Figure 4.20: Comparison of different damage indexes methods. Results of all dam-
age indexes at different torque levels obtained in the frequency bands: (a) 10∼2000
Hz (All signal spectrum), (b) 600∼2000 Hz (4th∼6th mode), (c) 1250∼2000 Hz
(5th∼6th mode).

DIs enhances early damage detection, particularly at lower torque values.
Notably, in Figures 4.20b and 4.20c, FRAC shows the highest sensitivity
to torque variation, with significant drops in the DI. The difference is more
pronounced, with the drop occurring earlier in these graphs. Thus, FRAC
is assumed to be this application’s main feature extraction technique and
is employed for torque loosening detection. In the case of multiple DIs, the
FRAC, FAAC, and MDI are used in the data augmentation procedure.

The experimental data is limited to 128 raw samples. Employing the
entire transmissibility signal in the DIs calculation may induce a false posi-
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tive in the prediction and diagnosis. Therefore, the truncated signal ranging
from 1250 to 2000 Hz (Figure 4.20c) was assumed in the DIs estimation.
After data processing and feature extraction, two attributes were defined,
DI1 and DI2, each consisting of 64 FRAC DI samples. The next steps in
the toque loosening estimation are data augmentation and clustering. The
DI clustering is performed using the unsupervised algorithm K-means with
a value of k = 8 (where k represents the number of classes) to identify
clusters within unlabeled data. Figure 4.21a shows the clustered DI dataset
returned by the K-means, comprising 64 samples belonging to one of the
8-labelled classes defining the torque levels.

The limited number of experimental data is a common issue researchers
face in various fields [169]. A small amount of data, or data scarcity, is a sig-
nificant challenge for applying machine learning tools involving experimen-
tal data due to its investigative nature [170]. When insufficient statistical
analysis or modelling data is available, a common approach is to generate
simulated data to fill the gap. In this work, we have adopted four methods to
reproduce experimental data, allowing us to generate augment datasets fol-
lowing the system’s physical characteristics and enrich the original dataset.
Using statistical moments (Section 3.2.4), four additional synthetic datasets
were generated with sizes corresponding to 50%, 100%, 200%, and 1000%
of the original dataset. Additionally, other datasets were generated using
TGAN (Section 3.2.4), Forest Diffusion (Section 3.2.4), and a dataset com-
bining the DIs methods (Section 3.2.4). The idea behind using combined
DI techniques is that the accuracy of the models depends directly on the
number of features available [283] based on the original data.

130131:81148777



Table 4.10: Description of the original dataset and augmented data.

Dataset Augmentation method No. of samples
Original Experimental 2 x 64 = 128
Orignal + 50% Statistical (Lognormal) 2 x 96 = 192
Orignal + 100% Statistical (Lognormal) 2 x 128 = 256
Orignal + 200% Statistical (Lognormal) 2 x 192 = 384
Orignal + 1000% Statistical (Lognormal) 2 x 384 = 768
Orignal + TGAN Tabular GAN 2 x 194 = 388
Orignal + Forest Diffusion Diffusion and XGBoost 2 x 155 = 310
DI Combined Increased features 3 x 64 = 192

Comprehensive details regarding the data fused into the original and
augmented datasets are provided in Table 4.10. The table lists the number
of samples in each dataset after applying various augmentation methods,
specifying the number of columns, the data quantity per column, and the
total number of data points. These artificial datasets, excluding the Com-
bined DI, were added to the experimental data and grouped into classes
using K-means clustering. The scatter plots in Figures 4.21(a-g) illustrate
the distribution of the grouped points for the generated and experimental
data, showing their correlation in two-dimensional space. The datasets were
then randomly split, with 70% allocated for training and 30% for testing.

Figure 4.21a shows the original dataset, estimated using K-means clus-
tering, with 128 samples divided into DI1 and DI2 attributes, where the at-
tributes diagonal shows a perfect correlation between them. Data dispersion
becomes evident for torque levels between 30 and 60 cNm. This clustering
serves as an indicator of the performance and accuracy of regression algo-
rithms. Figures 4.21b and 4.21e display the fused dataset, which includes
the original data augmented with 50%, 100%, 200%, and 1000% additional
random samples generated via the statistical approach. As the number of
samples increases, the data clustering becomes better pronounced, and the
correlation between DI and torque levels is clearly defined. Figure 4.21f is
the clustering of the original data plus TGAN, and Fig. 4.21g plus Forest
Diffusion. In both cases, the algorithms associate the original data with the
reproduced one following the identified pattern, where the reproduced data
are close to the original, maintaining the pattern of the data. Combining the

131132:61894704



DI approach assumed different feature extraction to compose the dataset,
relying only on the original data. Figure 4.21h shows the Combined DI clus-
ter dataset comprising the combination of FRAC, FAAC, and MDI damage
indices feature extractors.
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Figure 4.21: Clustered DI dataset returned by the K-means obtained from a)
Orignal experimental data and fused data augmented as: b) Experimental data +
50%, c) Experimental data + 100%, d) Experimental data + 200%, e) Experimental
data + 1000%, f) Experimental data + TGAN, g) Experimental data + Forest
Diffusion, h) Combined DI (”⃝ ” FRAC, ”

a
” FAAC, ”□” M_DI).

132133:80650963



4.3.2 Regression machine learning for loosening torque estima-
tion

The last step involves torque loosening and uncertainty quantifica-
tion. Nine machine-learning regression algorithms are employed to estimate
torque values. Among them, six are linear as Linear Regression, Lasso Re-
gression, K-Neighbors Regressor (KNR), Decision Tree Regressor (DTR),
Gradient Boosting Regressor (GBR), and Support Vector Regression with
a linear kernel (SVR-linear). The remaining three are nonlinear techniques
such as Support Vector Regression with a Radial Basis Function kernel
(SVR-RBF), Support Vector Regression with a Polynomial kernel (SVR-
Poly), and Multi-Layer Perceptron Regressor (MLP Regressor). Table 4.11
lists the hyperparameters chosen for each algorithm. All models were im-
plemented using the open-source Scikit-learn library in Python, with sim-
ulations performed in Google Colab. The evaluation metrics for these al-
gorithms include the coefficient of determination (R2), MAE, MSE, and
RMSE.

Table 4.11: Hyperparameters assumed for each ML algorithm.

Regression Algorithm Hyperparameters
Linear Regression fit intercept = True.
Lasso Regression alpha = 1.0.
KNR n_neighbors = 2.
SVR-Linear kernel = ’linear’; gamma = ’auto’; C = 10.

SVR-RBF kernel = ’rbf’; gamma = ’auto’; C = 10;
epsilon = 0.1.

SVR-Poly kernel = ’poly’; gamma = ’auto’; C = 10;
epsilon = 0.1; degree = 3.

MLP Regressor hidden layer sizes = 50; alpha = 0.001;
solver = ’lbfgs’; learning rate = ’adaptive’.

DTR criterion = ’squared_error’; max_depth = none.

GBR
loss = ’squared_error’; learning_rate = 0.1;
n_estimators = 100; criterion = ’friedman_mse’;
max_depth = 3.

The evaluation metrics for the regression algorithms are presented in
Table 4.12 and Fig. 4.22. The input datasets used for regression include
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the pure original dataset, the original dataset combined with 50%, 100%,
200%, and 1000% artificial data generated through statistical methods, the
original dataset combined with TGAN-generated artificial data, the original
plus artificial data from Forest Diffusion, and the multiples DIs. We focus on
FRAC, FAAC, and MDI, given their superior performance over the other
damage indices methods. The comparison of the metrics of the original
dataset with those from various data augmentation scenarios provides a
detailed analysis of the improvements achieved through these techniques.

Table 4.12: Comparison of evaluation metrics for regression models.
Scenario Regression Algorithm R2 MAE MSE RMSE Scenario Regression Algorithm R2 MAE MSE RMSE

Original

Linear Regression 0,93 4,98 36,96 6,08

Original
+ 1000%

Linear Regression 0,97 3,39 17,35 4,16
SVR-Linear 0,93 4,85 38,97 6,24 SVR-Linear 0,98 3,20 16,76 4,09
SVR-RBF 0,96 3,56 23,80 4,88 SVR-RBF 0,98 2,38 11,43 3,38
SVR-Poly 0,94 4,24 31,26 5,59 SVR-Poly 0,98 2,74 13,15 3,63
MLP Regressor 0,96 3,45 22,75 4,77 MLP Regressor 0,97 3,36 17,31 4,16
Lasso Regression 0,91 5,87 46,17 6,79 Lasso Regression 0,97 3,80 23,24 4,82
GBR 0,96 2,95 21,44 4,63 GBR 0,99 1,59 8,08 2,84
KNR 0,98 2,00 10,00 3,16 KNR 1,00 0,26 1,29 1,14
DTR 0,93 4,00 40,00 6,32 DTR 0,99 0,78 9,48 3,08

Original
+ 50%

Linear Regression 0,96 4,53 29,97 5,47

Original
+ TGAN

Linear Regression 0,96 4,19 25,99 5,10
SVR-Linear 0,96 4,01 25,99 5,10 SVR-Linear 0,96 3,83 28,82 5,37
SVR-RBF 0,98 2,59 13,57 3,68 SVR-RBF 0,98 2,08 10,58 3,25
SVR-Poly 0,98 3,06 16,80 4,10 SVR-Poly 0,96 4,19 26,00 5,10
MLP Regressor 0,99 2,57 10,05 3,17 MLP Regressor 0,99 2,09 6,60 2,57
Lasso Regression 0,94 5,46 44,02 6,63 Lasso Regression 0,94 5,04 39,19 6,26
GBR 0,98 1,62 12,20 3,49 GBR 1,00 0,41 3,31 1,82
KNR 0,98 1,21 11,21 3,35 KNR 1,00 0,00 0,00 0,00
DTR 0,98 1,72 17,24 4,15 DTR 1,00 0,34 3,39 1,84

Original
+100%

Linear Regression 0,98 2,79 13,64 3,69

Original
+ Forest

Diffusion (FD)

Linear Regression 0,95 4,77 32,84 5,73
SVR-Linear 0,98 3,05 16,76 4,09 SVR-Linear 0,95 4,41 32,55 5,71
SVR-RBF 0,99 2,09 7,72 2,78 SVR-RBF 0,98 2,64 15,37 3,92
SVR-Poly 0,98 2,79 13,83 3,72 SVR-Poly 0,97 2,93 18,24 4,27
MLP Regressor 0,99 1,96 6,58 2,56 MLP Regressor 0,98 2,59 11,85 3,44
Lasso Regression 0,97 4,02 24,44 4,94 Lasso Regression 0,95 4,19 32,18 5,67
GBR 0,99 0,99 5,10 2,26 GBR 0,99 0,52 6,11 2,47
KNR 1,00 0,38 1,92 1,39 KNR 1,00 0,21 2,13 1,46
DTR 0,99 0,77 7,69 2,77 DTR 0,99 0,43 8,51 2,92

Original
+200%

Linear Regression 0,98 3,40 17,93 4,23

Combined DI
(cDI)

Linear Regression 0,97 3,09 15,13 3,89
SVR-Linear 0,97 3,50 20,16 4,49 SVR-Linear 0,97 3,03 15,72 3,96
SVR-RBF 0,98 2,72 12,60 3,55 SVR-RBF 0,96 3,67 20,36 4,51
SVR-Poly 0,97 3,31 18,08 4,25 SVR-Poly 0,97 3,27 18,74 4,33
MLP Regressor 0,99 2,40 10,77 3,28 MLP Regressor 0,98 2,48 10,40 3,22
Lasso Regression 0,96 4,56 30,44 5,52 Lasso Regression 0,95 4,35 27,80 5,27
GBR 0,99 1,52 8,81 2,97 GBR 0,99 1,10 5,84 2,42
KNR 1,00 0,43 3,02 1,74 KNR 1,00 0,38 1,92 1,39
DTR 0,99 0,52 5,17 2,27 DTR 0,97 1,54 15,38 3,92

The analysis of metrics presented in Table 4.12 and the plot in Fig 4.22a
show that all models performed well, as indicated by the coefficient of de-
termination (R2). For the original data, the algorithms achieve R2 values
ranging from 0.91 to 0.98, suggesting that the models explain the data vari-
ance effectively. As the dataset is augmented through statistical moments
(50%-1000%), an improvement is seen in R2, ranging from 0.94 to 1.00, re-
flecting enhanced model performance and a stronger ability to handle data
variance, particularly for the MLP Regressor, GBR, KNR, and DTR. The
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(a) (b)

(c) (d)

Figure 4.22: Comparison of the performance of the algorithm and the augmented
data technique through the metrics a) R2, b) MAE, c) MSE, and d) RMSE.

data augmentation techniques like TGAN and Forest Diffusion also result
in significant improvements, with R2 values ranging from 0.94 to 1.00, and
some models (MLP Regressor, GBR, KNR, DTR) achieving R2 values close
to or equal to 1. The Combined DI method consistently maintains R2 val-
ues between 0.95 and 1.00, demonstrating high performance, with GBR and
KNR achieving R2 values near or equal to 1.

For the original dataset, the algorithms achieve the MAE between 2.00
and 5.87, with KNR standing out for having the lowest MAE among all
models, as plotted in Fig. 4.22b. As the data is augmented using statistical
moments, the MAE decreases to a range of 0.26 to 5.46, indicating improved
model accuracy and reduced error, with GBR, KNR, and DTR showing the
lowest MAE values. Augmentation methods like TGAN and Forest Diffusion
further reduce the MAE, achieving values between 0.00 and 4.77, with GBR,
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KNR, and DTR yielding the most accurate predictions. The Combined DI
method significantly improved over the original dataset, with MAE values
ranging from 0.38 to 4.35, again highlighting KNR as the best performer.

The MSE shown in Fig 4.22c penalises larger errors more severely. For
the original dataset, the MSE values range between 10.00 and 46.17, with
KNR exhibiting the lowest value among the algorithms. When the data is
augmented using the statistical method, the MSE improves, ranging from
1.29 to 44.02, with KNR again achieving the lowest values. Augmentation
methods such as TGAN and Forest Diffusion lead to even greater accu-
racy, yielding MSE values between 0.00 and 32.84, with KNR using TGAN
providing the best result. The Combined DI method also significantly im-
proves, with MSE values ranging from 1.92 to 27.8. In particular, GBR and
KNR stand out for having the lowest MSE values, demonstrating the effec-
tiveness of these combined techniques. In Fig. 4.22d, the RMSE provides
the magnitude of the error, with lower values indicating better model per-
formance. The algorithms achieve RMSE values between 3.16 and 6.79 for
the original dataset, reflecting a good fit. When the dataset is augmented
using statistical moments, the RMSE significantly decreases, ranging from
1.14 to 6.63, showing improved performance compared to the original data.
The MLP Regressor, GBR, KNR, and DTR algorithms have the lowest
RMSE values. Augmentation techniques like TGAN and Forest Diffusion
also result in better performance, with RMSE values ranging from 0.00 to
6.26, with KNR showing a perfect fit when using TGAN. The Combined DI
method demonstrates RMSE values between 1.39 and 5.27, further improv-
ing over the original data. KNR and GBR achieve the lowest RMSE values,
reinforcing the enhanced performance provided by combining techniques.
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(a) Linear Regression
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(b) Lasso Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR

0 10 20 30 40 50 60 70 80 90
Actual Torque [cNm]

0

10

20

30

40

50

60

70

80

90
Es

tim
at

ed
 To

rq
ue

 [c
Nm

]

Mean of estimated torque
Estimated torque

(i) GBR

Figure 4.23: Loosening torque estimation versus actual torque predicted from the
original experimental dataset.
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(a) Linear Regression
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(d) SVR-Linear
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR
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Figure 4.24: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original experimental
dataset.

Table 4.13: Means and standard deviation values of the regression models per-
formed from the original data.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental

10 15.81 1.34 16.70 1.30 16.68 1.13 16.07 1.36 11.15 1.92 19.46 1.17 15.00 5.00 12.50 2.50 15.00 5.00
20 26.18 1.32 23.59 0.72 23.06 0.73 23.26 0.76 23.31 1.60 28.86 1.19 25.00 5.00 22.50 2.50 25.00 5.00
30 30.31 3.40 28.40 1.28 28.16 1.36 28.38 1.35 28.92 3.66 32.52 3.13 28.86 5.57 27.50 2.50 30.00 7.07
40 41.96 0.00 39.08 0.00 40.48 0.00 39.77 0.00 44.51 0.00 42.96 0.00 42.75 0.00 40.00 0.00 50.00 0.00
50 40.72 3.59 44.74 2.51 47.65 2.97 45.67 2.63 41.78 6.96 41.56 3.23 48.47 1.48 51.67 4.71 40.00 0.00
60 51.61 3.48 48.54 3.77 51.74 4.51 49.75 3.92 61.25 4.25 51.58 3.06 57.63 4.17 61.67 2.36 60.00 0.00
70 68.51 0.00 61.70 0.00 65.66 0.00 63.38 0.00 68.09 0.00 66.83 0.00 66.14 0.00 70.00 0.00 70.00 0.00
80 80.81 3.07 78.24 2.36 78.42 1.20 78.55 2.05 78.59 1.53 77.63 2.76 80.00 0.00 80.00 0.00 80.00 0.00

In Figure 4.23(a-i), the plots compare the actual torque with the corre-
sponding estimated values from the nine regression algorithms. The input is
the K-means DI clustering extracted from the original dataset. The diagonal
dashed-black line represents the perfect correlation between the actual and
predicted torques for all similar graphics. At the same time, the red ’X’ sym-
bols denote the estimated mean values for each torque condition, and the
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blue dots show the individual torque estimates provided by the algorithms.
The graphs in Figure 4.24(a-i) illustrate the mean values and probability
density functions (PDFs) of the estimated torques at various levels: 10cNm,
20cNm, 30cNm, 40cNm, 50cNm, 60cNm, 70cNm, and 80cNm. The corre-
sponding mean values and STDs are listed in Table 4.13. Overall, the nine
methods demonstrated good torque estimation accuracy, with KNR out-
performing the others by producing mean torque estimates closely aligned
with the correlation line and actual values. However, methods such as KNR,
DTR, and GBR made it difficult to capture the PDFs for some torque levels,
as their estimates were tightly clustered around the mean value.
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(a) Linear Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF

0 10 20 30 40 50 60 70 80 90
Actual Torque [cNm]

0

10

20

30

40

50

60

70

80

90

Es
tim

at
ed

 To
rq

ue
 [c

Nm
]

Mean of estimated torque
Estimated torque

(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR
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Figure 4.25: Loosening torque estimation versus actual torque predicted from the
augmented dataset: Original plus 50% of random samples given by the statistic
method.
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Figure 4.26: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus 50% of
random samples given by the statistic method.

Table 4.14: Means and standard deviation values of the regression models per-
formed from the original plus 50% of random samples given by the statistic method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Original
+50%

10 17.24 3.53 16.95 2.00 14.72 1.89 14.08 2.31 11.88 2.20 21.48 2.71 10.13 0.18 10.00 0.00 10.00 0.00
20 24.33 2.69 24.67 1.97 22.70 2.20 23.11 2.30 22.49 2.59 27.49 2.15 23.32 3.80 23.75 4.15 22.50 4.33
30 32.14 3.60 30.21 1.68 29.19 2.07 29.68 2.04 28.60 1.74 34.78 3.08 29.29 0.97 30.00 0.00 27.50 4.33
40 38.00 7.51 37.41 4.00 38.15 5.06 37.89 4.68 39.92 5.59 39.55 4.91 45.41 5.51 35.00 5.00 45.00 5.00
50 45.57 0.00 48.39 0.00 51.68 0.00 49.34 0.00 52.30 0.00 45.33 0.00 49.32 0.00 50.00 0.00 50.00 0.00
60 51.82 5.22 50.58 4.07 54.48 4.92 52.44 4.39 57.92 3.99 51.68 3.74 56.89 2.57 56.67 4.71 56.67 4.71
70 66.65 2.96 66.06 1.58 70.34 1.40 67.47 1.61 68.11 1.67 64.38 1.93 70.00 0.00 70.00 0.00 70.00 0.00
80 82.65 3.20 80.98 2.70 79.18 1.11 79.80 2.10 79.29 2.21 78.50 2.72 78.99 3.00 80.00 0.00 79.00 3.00

Figure 4.25(a-i) shows the correlation of the actual versus the predicted
torque using nine regression algorithms. The input dataset provided by K-
means consists of the original dataset augmented by 50% of its size, with
random samples generated based on the original data’s first and second sta-
tistical moments and a Lognormal distribution. The PDFs in Figs.4.26(a-i)
illustrate the estimated torque mean values and their distribution densi-
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ties, with the corresponding means and standard deviations displayed in
Table4.14. Most regression methods accurately estimated the torque levels,
except for the Linear and Lasso regressors, which miscalculated some torque
mean. The other techniques accurately predicted the torque values close to
the actual values. KNR, however, toiled to capture the PDFs at some torque
levels, as its estimates were tightly clustered around the mean value.

Figure 4.27(a-i) shows graphs correlating the actual to estimated torque
values with the regression algorithms. The input dataset consists of the orig-
inal data, augmented by 100% of the original dataset, with random samples
calculated using the original data’s first and second statistical moments and
a Lognormal distribution. The PDFs in Figs. 4.28(a-i) illustrate the mean
estimated torque values and their distribution. The corresponding mean
values and STD are provided in Table 4.15. Most regression methods accu-
rately estimated the torque levels, except the Linear, Lasso, and SVR Linear
regressors, which miscalculated a few of the torque’s mean. The remaining
methods accurately predicted the torque values, closely aligning with the
actual values. The GBR captured a few PDFs only as its estimates were
tightly clustered around the mean.
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(a) Linear Regression
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(b) Lasso Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR
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Figure 4.27: Loosening torque estimation versus actual torque predicted from the
augmented dataset: Original plus 100% of random samples given by the statistic
method.
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Figure 4.28: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus 100% of
random samples given by the statistic method.

Table 4.15: Means and standard deviation values of the regression models per-
formed from the original plus 100% of random samples given by the statistic
method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+100%

10 9.14 3.18 9.59 2.56 9.83 1.85 9.63 2.43 9.99 0.03 13.70 2.61 10.90 1.84 10.00 0.00 10.00 0.00
20 20.70 2.54 20.54 2.19 19.38 2.24 20.33 2.21 17.22 2.34 23.91 2.19 20.30 1.34 19.44 1.57 20.00 0.00
30 33.68 4.53 33.83 2.21 34.57 2.47 33.93 22.31 33.34 0.93 34.69 3.38 35.18 5.10 32.50 2.50 35.00 5.00
40 41.27 4.34 41.21 3.23 43.55 4.00 41.58 3.35 41.68 4.05 41.25 2.50 40.09 0.12 40.00 0.00 40.00 0.00
50 47.43 2.79 45.66 1.86 48.87 2.26 46.35 1.94 50.28 2.96 47.62 1.75 49.98 0.01 50.00 0.00 50.00 0.00
60 54.66 1.68 54.46 0.38 59.12 0.58 55.29 0.42 60.06 2.15 52.68 1.55 61.16 0.98 62.50 2.50 65.00 5.00
70 64.37 3.90 62.24 3.41 67.16 3.09 63.27 3.34 70.04 1.83 62.20 2.86 71.67 1.28 70.00 0.00 72.50 4.33
80 81.25 2.71 78.26 2.46 78.87 1.29 78.62 2.25 79.17 1.41 77.07 2.31 79.49 1.71 80.00 0.00 80.00 0.00
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(a) Linear Regression
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(b) Lasso Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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(g) MLP Regressor
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Figure 4.29: Loosening torque estimation versus actual torque predicted from the
augmented dataset: Original plus 200% of random samples given by the statistic
method.
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Figure 4.30: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus 200% of
random samples given by the statistic method.

Table 4.16: Means and standard deviation values of the regression models per-
formed from the original plus 200% of random samples given by the statistic
method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+200%

10 10.65 2.97 11.24 2.70 12.01 1.94 11.17 2.57 11.41 2.31 15.25 2.45 11.37 2.58 10.63 1.65 11.25 3.31
20 21.92 3.47 22.10 3.28 21.33 3.11 21.82 3.29 20.75 2.79 25.14 2.95 19.72 3.10 19.62 1.33 19.23 2.66
30 30.23 3.16 29.80 2.84 29.51 3.12 29.66 2.92 28.83 2.83 32.30 2.52 26.12 3.86 29.00 2.00 30.00 0.00
40 40.05 4.03 40.03 3.25 41.10 3.97 40.30 3.36 37.84 4.11 41.25 3.10 38.05 3.91 40.00 0.00 38.33 3.73
50 50.55 6.65 49.04 4.83 51.94 5.53 49.58 4.96 50.86 7.13 49.98 4.59 50.12 0.11 50.00 0.00 50.00 0.00
60 50.72 0.00 50.20 0.00 53.18 0.00 50.87 0.00 52.04 0.00 50.57 0.00 59.27 0.00 50.00 0.00 60.00 0.00
70 63.72 3.49 62.19 3.09 66.13 2.95 62.94 3.04 69.96 2.60 61.75 2.84 69.20 2.26 70.00 0.00 70.00 0.00
80 81.29 2.17 79.30 2.03 79.07 1.09 78.99 1.80 79.82 0.78 77.24 1.84 79.79 0.66 80.00 0.00 80.00 0.00

Figure 4.29(a-i) shows the graphs correlating the actual and predicted
torque value estimates from nine regression algorithms. The input dataset,
provided by K-means, consists of the original data augmented by 200%, us-
ing random samples generated based on the original data’s first and second
statistical moments and a Lognormal distribution. The PDFs in Figs.4.30(a-
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i) illustrate the estimated mean torque values and their distribution densi-
ties, with the corresponding means and standard deviations shown in Ta-
ble4.16. KNR and DTR provided torque values that closely matched the
correlation line. In contrast, the other regression methods also delivered
accurate torque values estimation, therefore with slight deviations, particu-
larly around 60cNm and 70cNm. However, DTR and KNR could not define
the PDF, as their predictions were tightly clustered around the mean value.

Figure 4.31(a-i) presents the graphs correlating the actual and esti-
mated torque values by the nine regression algorithms, Figs.4.32(a-i) shows
the mean estimated torque values and their distribution densities, and Ta-
ble4.17 provides the corresponding mean values and standard deviations.
The input dataset consists of the original data augmented by 1000%, using
random samples calculated based on the first and second statistical mo-
ments of the original data and a Lognormal distribution. Most regression
methods accurately estimated the torque levels, with KNR and DTR show-
ing tight clustering around the mean value. Overall, all algorithms predicted
the torque values with high accuracy.
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(a) Linear Regression

0 10 20 30 40 50 60 70 80 90
Actual Torque [cNm]

0

10

20

30

40

50

60

70

80

90

Es
tim

at
ed

 To
rq

ue
 [c

Nm
]

Mean of estimated torque
Estimated torque

(b) Lasso Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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Figure 4.31: Loosening torque estimation versus actual torque predicted from the
augmented dataset: Original plus 1000% of random samples given by the statistic
method.
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Figure 4.32: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus 1000% of
random samples given by the statistic method.

Table 4.17: Means and standard deviation values of the regression models per-
formed from the original plus 1000% of random samples given by the statistic
method.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+1000%

10 10.33 1.30 10.61 1.22 10.48 0.91 9.50 1.30 10.59 0.75 14.61 1.06 9.58 1.01 10.00 0.00 10.00 0.00
20 22.48 2.35 22.54 2.25 21.48 2.34 22.56 2.51 22.37 2.30 25.26 2.07 20.26 2.25 20.23 1.04 18.64 3.43
30 30.82 3.49 30.70 3.26 30.63 3.87 31.71 3.65 30.72 3.34 32.64 2.96 29.61 4.04 30.45 1.44 29.09 5.14
40 42.24 3.42 41.91 3.22 44.19 3.93 44.11 3.51 42.19 3.29 42.61 2.91 42.03 3.00 39.62 1.33 40.00 0.00
50 43.74 3.72 43.28 3.31 45.93 4.03 45.86 3.68 43.66 3.40 44.62 3.13 48.33 4.60 50.00 0.00 46.67 7.45
60 52.69 3.21 52.17 2.93 56.20 3.31 54.91 3.02 52.67 3.01 51.75 2.72 59.94 5.77 60.63 1.65 60.00 0.00
70 67.91 4.53 67.03 4.21 70.79 3.39 69.25 3.68 67.92 4.31 65.55 3.80 69.76 2.14 70.00 2.24 69.00 3.00
80 82.67 2.00 81.50 1.93 79.56 0.74 80.25 1.24 82.73 1.97 78.55 1.73 79.93 0.31 80.00 0.00 80.00 0.00
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Figure 4.33: Loosening torque estimation versus actual torque predicted based on
an original plus augmented samples from TGAN.
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Figure 4.34: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus augmented
sample from TGAN.

Table 4.18: Means and standard deviation values of the regression models per-
formed from the original plus augmented sample from TGAN.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+TGAN

10 14.55 2.69 15.07 2.84 11.76 2.67 9.78 3.52 14.57 2.68 19.69 2.30 10.05 0.05 10.00 0.00 10.00 0.00
20 22.73 3.74 23.20 2.01 20.58 2.74 20.46 3.16 22.73 3.74 26.70 3.16 20.44 1.14 20.00 0.00 20.00 0.00
30 31.99 1.30 31.16 1.28 30.81 1.51 31.18 1.42 31.99 1.30 34.60 1.10 30.02 0.03 30.00 0.00 30.00 0.00
40 39.78 2.70 38.11 2.19 40.29 3.07 40.24 2.91 39.78 2.70 41.26 2.30 35.17 5.60 40.00 0.00 35.00 5.77
50 45.98 1.09 47.16 0.99 51.24 1.26 49.42 1.13 45.98 1.09 46.63 0.93 50.11 0.06 50.00 0.00 50.00 0.00
60 49.10 1.61 45.34 1.48 50.44 1.95 49.91 1.79 49.10 1.61 49.20 1.38 59.92 0.10 60.00 0.00 60.00 0.00
70 66.33 3.68 63.91 3.65 70.31 3.12 67.93 3.14 66.33 3.68 63.98 3.15 70.01 0.00 70.00 0.00 70.00 0.00
80 84.53 2.33 80.84 2.28 79.74 0.65 80.09 1.19 84.53 2.33 79.55 1.99 79.98 0.00 80.00 0.00 80.00 0.00

The graphs of Figure 4.33(a-i) correlate the actual torque values with
the nine regression algorithms’ predictions, while Figs.4.34(a-h) shows the
mean estimated torque values and their distribution densities. Table4.18
provides the corresponding torque mean values and standard deviations.
The input dataset consists of the original data augmented with samples
from the TGAN approach. Most regression methods accurately estimated
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the torque levels, showing tight clustering around the mean value. The KNR
presents the perfect correlation for all torque values, followed by DTR and
GBR, misleading only 40cNm torque.

Another generative network employed to augment data is the Forest
Diffusion. Figure 4.35(a-i) shows the correlation of the actual torque val-
ues with the estimated by the regression algorithms, Figs.4.36(a-i) exhibits
the mean estimated torque values and their distribution densities, and Ta-
ble 4.19 provides the corresponding torque’s mean and STD values. The in-
put dataset consists of the original data augmented with samples provided
by the Forest Diffusion approach. Most regression methods accurately es-
timated the torque levels showing tight clustering around the mean value.
The KNR, DTR, and GBR precisely predicted the mean torque values with
a tight data cluster. The other method estimated the mean torque with a
certain dispersion, indicating the variability in the prediction.
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Figure 4.35: Loosening torque estimation versus actual torque predicted based on
an original plus augmented samples from Forest Diffusion.
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Figure 4.36: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus augmented
sample from Forest Diffusion.

Table 4.19: Means and standard deviation values of the regression models per-
formed from the original plus augmented sample from Forest Diffusion.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+ Forest Diffusion

10 12.46 3.60 13.22 3.21 9.99 3.37 9.85 4.04 10.78 2.26 17.04 3.11 12.66 6.48 11.67 4.08 13.33 8.16
20 27.21 5.45 25.88 3.75 25.08 5.42 26.10 5.21 20.70 3.51 29.69 4.50 19.99 0.00 20.00 0.00 20.00 0.00
30 25.91 2.77 27.04 2.45 25.49 3.19 26.57 3.08 24.27 2.94 29.01 2.39 29.98 0.03 30.00 0.00 30.00 0.00
40 38.24 2.00 37.37 1.41 39.74 2.09 39.63 1.87 38.71 3.76 39.54 1.65 40.21 0.32 40.00 0.00 40.00 0.00
50 45.61 0.62 48.23 0.02 51.95 0.34 50.11 0.30 53.25 0.49 46.72 0.44 50.00 0.04 50.00 0.00 50.00 0.00
60 49.24 4.34 46.49 4.48 52.20 5.43 50.70 4.78 60.17 2.54 48.91 3.87 59.95 0.09 60.00 0.00 60.00 0.00
70 65.30 4.97 62.66 3.76 69.32 3.44 66.71 3.87 69.36 2.32 63.14 4.12 70.60 1.47 70.00 0.00 70.00 0.00
80 84.43 3.42 82.07 3.13 79.82 1.02 80.24 1.95 79.97 1.59 80.12 2.97 79.99 0.00 80.00 0.00 80.00 0.00
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(a) Linear Regression
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(b) Lasso Regression
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(c) KNR
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(d) SVR-Linear
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(e) SVR-RBF
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(f) SVR-Poly
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(g) MLP Regressor
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(h) DTR
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(i) GBR

Figure 4.37: Loosening torque estimation versus actual torque predicted based on
an original plus augmented samples from Combined DI.
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(f) SVR-Poly
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(g) MLP Regressor
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Figure 4.38: Probability density function of the estimated torque predicted with
clustering data from the regression algorithms based on the original plus augmented
sample from Combined DI.

Table 4.20: Means and standard deviation values of the regression models per-
formed from the original plus augmented sample from Combined DI.

Scenario Torque Linear Regr. SVR-Linear SVR-RBF SVR-Poly MLP Regr. Lasso Regr. GBR KNR DTR
Mean STD Medias STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Experimental
+ Combined DI

10 15.55 1.62 18.62 1.27 20.40 0.79 19.44 0.90 13.53 4.99 21.28 1.58 10.05 0.15 11.25 2.50 10.00 0.00
20 20.06 0.00 21.40 0.00 21.65 0.00 20.55 0.00 19.10 0.00 26.96 0.00 20.00 0.00 20.00 0.00 20.00 0.00
30 26.25 3.50 27.79 2.98 28.25 2.70 27.78 2.76 30.38 3.17 29.11 2.73 31.88 2.84 30.56 1.67 31.11 3.33
40 38.81 4.77 38.02 4.01 7.92 4.27 38.12 4.90 39.27 3.44 38.74 3.08 40.73 1.87 40.00 0.00 43.33 5.77
50 52.61 2.92 51.26 3.24 50.73 3.37 50.98 3.41 50.63 2.34 50.29 2.30 50.07 0.02 50.00 0.00 50.00 0.00
60 57.20 2.18 57.29 1.23 57.15 1.05 55.87 2.01 56.03 0.83 55.05 1.48 57.05 2.69 59.00 2.24 54.00 5.48
70 71.73 2.37 72.51 2.65 71.71 2.31 71.83 2.76 71.20 3.43 68.72 2.42 70.00 0.00 70.00 0.00 70.00 0.00
80 78.22 1.78 78.91 1.61 76.64 1.10 78.93 1.91 79.17 1.87 75.13 1.68 79.29 2.23 80.00 0.00 79.00 3.16

The graphs of Figure 4.33(a-i) correlate the actual torque values with
the estimated ones by the nine regression algorithms, Figs.4.34(a-h) show
the mean estimated torque values and their distribution densities, and Ta-
ble4.18 provides the corresponding mean values and standard deviations.
The input dataset consists of the original data augmented with samples pro-
vided by the Combined DI approach. In the other approaches, the dataset
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has its tabular rows increased by the new artificial data generated by the
other augmentation techniques. In the case of the Combined DI, the tab-
ular dataset increases in columns, and more information based strictly on
the experimental data is employed. Most regression methods accurately es-
timated the torque levels, showing tight clustering around the mean value
with a small standard deviation. The KNR presents the perfect correlation
for all torque values.

In general, the algorithms’ performance improved with data augmen-
tation. The GBR, KNR, MLP regressor and DTR machine learning algo-
rithms consistently outperformed others across all metrics, demonstrating
the best results for torque loosening estimation. This was evident through
their lower dispersion, while other methods could estimate torque but with
a higher dispersion, as indicated by the PDFs and calculated STDs of the
torque values. The four data augmentation strategies, Statistical, TGAN,
Forest Diffusion, and Combined DI, effectively increased the dataset’s size
and quality, ultimately enhancing the performance of the regression algo-
rithms. This suggests that employing diverse data augmentation techniques
can significantly maximise the efficiency of regression models. Among these,
the statistical approach was the fastest and most intrusive in increasing the
data size. However, minimal sampling is required to ensure effective uncer-
tainty quantification and information of the original dataset.

TGAN and Forest Diffusion offer advantages over the statistical ap-
proach in data augmentation by preserving the data patterns, as they gener-
ate data that aligns closely with the original characteristics. These methods
operate autonomously based on GANs, leaving little user control over the
process since the neural networks handle reproduction. The combined DI
method, which relies solely on data-driven techniques, also proved highly
effective in improving ML regression estimations. Our findings indicate that
the proposed regression algorithms, enriched with data augmentation tech-
niques, can accurately estimate torque levels using raw vibration spectra as
input. Additionally, the models provided valuable uncertainty information,
allowing us to quantify the variability in the torque estimations.

156157:11213267



Final remarks

The study proposed a data-driven regression machine learning frame-
work for estimating bolt torque loosening using raw vibration spectra from
experimental tests, enhanced with data augmentation techniques. The ap-
proach effectively captured torque variations while addressing aleatory un-
certainty from assembly variability by employing nine supervised regression
models and leveraging damage indices such as FRAC, FAAC, and MDI
for feature extraction within selected frequency bands. Integrating a virtual
sensor for data augmentation improved the robustness of torque estimation,
mitigating challenges related to limited datasets in structural health mon-
itoring. Results demonstrated high accuracy, with MLP Regressor, KNR,
GBR, and DTR outperforming other models. The findings highlight the ef-
fectiveness of combining data augmentation with ML regression techniques,
offering a reliable, experimentally driven methodology for bolt integrity as-
sessment without requiring numerical models.

4.4 Chapter final remarks

This chapter presented the methodology and machine learning-based
framework developed for detecting bolt loosening, estimating torque in
bolted joints, and monitoring the operational conditions of the Aventa wind
turbine. The proposed approach leveraged supervised regression and clas-
sification models, feature extraction techniques, and data augmentation to
enhance model robustness and reliability in structural health monitoring.

For torque estimation, supervised regression models—particularly MLP
Regressor, KNR, GBR, and DTR, achieved high accuracy, benefiting from
data augmentation techniques that improved dataset quality and addressed
the challenges of limited experimental data. Feature extraction based on
damage indices such as FRAC, FAAC, and MDI proved effective in track-
ing torque variations. Additionally, unsupervised learning was applied to
explore inherent data patterns, supporting the classification and regression
models.
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In wind turbine monitoring, the SHM-ML subroutine effectively iden-
tified fault conditions, with SVM emerging as the most robust classifica-
tion algorithm. It achieved perfect binary classification performance and
distinguished multiple operational states, particularly along the Zs direc-
tion. These findings reinforce the potential of machine learning for real-time
structural health monitoring, providing a data-driven approach to diagnos-
ing faults without relying on numerical models.

Despite the promising results, challenges remain, particularly in han-
dling nonlinearities and discontinuities in regression modelling. Future work
will expand the dataset, explore nonlinear regression techniques, and inte-
grate physics-informed learning algorithms to enhance model interpretabil-
ity and generalization. The proposed framework lays a strong foundation
for intelligent monitoring systems in bolted structures and wind turbine
components, contributing to advancements in predictive maintenance and
structural integrity assessment.

158159:55174825



5 Conclusion

The studies proposed in this thesis were to develop a methodology for
monitoring systems and structures based on their dynamic response using
SHM and ML techniques. This final chapter aims to recapitulate the main
findings presented throughout this research, bringing together the informa-
tion discussed in the previous chapters, and consolidating the conclusions
reached. In addition, possible directions for future research are suggested.

In this thesis, a methodology for monitoring structures based on their
dynamic response was developed using SHM and ML techniques. The focus
was on recognizing and detecting damage in bolted structures, taking into
account the influence of assembly and disassembly of the structure during
experimental tests. To deal with variability in raw spectral data and noise,
ML classifiers were designed to give robustness to the methodology. In ad-
dition, an approach was proposed to simplify the analysis by eliminating
the need to evaluate the most sensitive features for extraction, thus intro-
ducing the concept of FRAC in obtaining the damage index, which plays
a crucial role in the methodology of our algorithm. Despite the limitation
of the data set, which can impact the results, the proposed methodology
has shown potential for applications in structure monitoring. The limitation
was subsequently incorporated into the algorithm developed.

Two approaches have been proposed for quantifying damage to struc-
tures. The first was the development of a virtual sensor in SHM-ML for data
augmentation through the fusion of physical and synthetic data in order to
increase the reliability and applicability of the proposed methodology. The
second consists of developing a methodology involving ML algorithms for
quantifying damage associated with process uncertainty. The methodology
was applied to a bolted joint to estimate the loosening of the bolt torque
using raw vibration spectra and the uncertainty associated with the assem-
bly in the experimental tests. The integration of a virtual sensor for data
augmentation improved the robustness of torque estimation, mitigating the
challenges related to limited data sets in SHM. The approach effectively cap-
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tured torque variations by addressing the random uncertainty of assembly
variability, employing nine supervised regression models, and using damage
indices for feature extraction within selected frequency bands. The findings
highlight the effectiveness of combining data augmentation with ML regres-
sion techniques, offering a reliable, experimentally driven methodology for
assessing bolt integrity without requiring numerical models.

A performance evaluation of the data-driven SHM-ML methodology
was proposed with experimental data tested on an operational in-situ wind
turbine. The methodology used the unsupervised k-means clustering tech-
nique to classify and group data into homogeneous clusters, allowing the
identification of patterns without predefined labels. Two types of classifica-
tion were applied for fault detection: binary and multiclass. The results of
binary classification achieved perfect metrics, reflecting its ability to distin-
guish between normal conditions and faults in different data orientations.
In multiclass classification, the approach was able to identify multiple op-
erating states and different levels of damage with high precision, excelling
in discriminating between classes. The results indicate that the proposed
methodology has great potential to improve the structural monitoring of
wind turbines in operation.

The obtained results contribute to the development of methods based
on the analysis of measurement data for monitoring the technical condition
of wind turbines, increasing their reliability and safety of use. The proposed
methods are particularly effective in assessing the technical condition of
structures and in the future will become a basic expert tool in identifying
changes in construction objects such as wind turbines.

5.1 Products derived from this research

1. Scientific product - Journal

• Coelho, J.S.; Machado, M.R.; Sousa, A.A.S.R. PyMLDA: A
Python open-source code for Machine Learning Damage Assess-
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ment, Software Impacts, Volume 19, 2024, ISSN 2665-9638.
https://doi.org/10.1016/j.simpa.2024.100628.

• Coelho, J.S.; Machado, M.R.; Dutkiewicz, M.; Teloli, R.O. Data-
driven machine learning for pattern recognition and detection of
loosening torque in bolted joints. J. Braz. Soc. Mech. Sci. Eng.
46, 75 (2024). https://doi.org/10.1007/s40430-023-04628-6.

• Sousa A.A.S.R.; Coelho, J.S.; Machado M.R.; Dutkiewicz M.
Multiclass Supervised Machine Learning Algorithms Applied to
Damage and Assessment Using Beam Dynamic Response. J. Vib.
Eng. Technol. 11, 2709–2731 (2023). https://doi.org/10.1007/s42
417-023-01072-7.

• Coelho, J. S.; Machado M. R.; Dutkiewicz M. Integrating Vir-
tual Sensor Data Augmentation into Machine Learning for Dam-
age Quantification of Bolted Structures under Assembly Uncer-
tainty,2025, Under review.

2. Technological product - Patent request, Registration of Computer
Programs and Open code.

• Machado, M.R.; Coelho, J.S.; de Sousa, A.A.S.R. Structural In-
tegrity Monitoring Based on Machine Learning Techniques. 2024,
Brasil. Patente: Privilégio de Inovação. Número do registro:
BR1020240152867, título: ”Método para o Monitoramento de In-
tegridade Estrutural Baseado em Técnicas de Aprendizado de
Máquina”, Instituição de registro: INPI - Instituto Nacional da
Propriedade Industrial. Depósito: 25/07/2024.

• Machado, M.R.; Coelho, J.S.; Sousa, A.A.S.R. PyMLDA - Ma-
chine Learning for Damage Assessment. 2024. Patente: Programa
de Computador. Número do registro: BR512024001008-4, data de
registro: 17/01/2024, título: ”PyMLDA - Machine Learning for
Damage Assessment”, Instituição de registro: INPI - Instituto
Nacional da Propriedade Industrial.
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• M.R. Machado , J.S. Coelho , A.A. S. R. Sousa (2024). PyMLDA
- Machine Learning for Damage Assessment. Open code:
https://github.com/mromarcela/PyMLDA.

5.2 Suggestions for further work

The study carried out in this thesis opens up new questions to be
explored, and possible improvements can be implemented. The following
are some aspects that could be addressed in future research.

• In the study, only ML models were used for classification, in order to
distinguish between normal operation and turbine failure. As a sug-
gestion, we propose the application of regression-based ML models,
an approach that shows promise for improving the analysis and mon-
itoring of turbine performance.

• Include in the methodology the optimization of resource selection and
the exploration of clustering techniques to increase the accuracy of
the models.

• Integrating multiphysics data and Machine Learning for monitoring
wind turbines. In this context, the integration of multiphysics data
with ML techniques appears as a promising solution to improve the
understanding and performance of these complex systems.

• Incorporate DL techniques into the methodology, such as neural net-
works and Variational Autoencoders, to improve data modeling and
model accuracy.
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ABSTRACT

STRUCTURAL HEALTH MONITORING OF WIND
TURBINES COMPONENTS USING MACHINE LEARNING

M.Sc. Jefferson da Silva Coelho

Keywords: Unsupervised-supervised machine learning, Damage index,
Damage detection, Uncertainty quantification.

Wind turbines are complex electromechanical systems that require con-
tinuous monitoring to ensure operational efficiency, minimise costs, and pre-
vent critical failures. ML has shown great promise in SHM by automating
defect detection through data-driven methods. Vibration-based ML tech-
niques are particularly effective for monitoring turbine components such
as blades, towers, and gearboxes. However, challenges persist in adapting
SHM methods to complex environmental conditions and ensuring reliable
monitoring and failure detection. The objective of this work is to propose a
data-driven SHM-ML methodology designed for pattern recognition, dam-
age detection, and quantification in wind turbine components. Three case
studies were proposed to validate the SHM-ML approach, comprising super-
vised regression and classification models, feature extraction techniques and
data augmentation to improve the robustness and reliability of the models.
The first study monitored and evaluated three failure events during the op-
eration of a real wind turbine using the acceleration time spectrum as raw
monitoring data. The second case focused on the detection and classification
of torque loosening in bolted joints based on frequency domain spectral sig-
nals from experimental tests, combining supervised and unsupervised tech-
niques with a damage index derived from the dynamic response. The third
case integrates regression algorithms with data augmentation techniques
to enhance an accurate estimate of torque loosening using raw vibration
spectra in bolted structures. The results demonstrated high accuracy in the
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estimation and classification of damage, validating the effectiveness of the
SHM-ML methodology developed. These findings contribute to the advance-
ment of data-driven approaches to wind turbine SHM, increasing reliability
and operational safety.
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STRESZCZENIE

MONITOROWANIE STANU TECHNICZNEGO TURBIN
WIATROWYCH Z WYKORZYSTANIEM UCZENIA

MASZYNOWEGO

M.Sc. Jefferson da Silva Coelho

Słowa kluczowe: Uczenie maszynowe nadzorowane i nienadzorowane,
wskaźnik uszkodzenia, wykrywanie uszkodzeń, ocena niepewności.

Turbiny wiatrowe to złożone systemy konstrukcyjno - budowlane, które
wymagają ciągłego monitorowania w celu zapewnienia efektywności użyt-
kowej, minimalizacji kosztów oraz zapobiegania awariom. Są to konstrukcje
wieżowe o znacznej wysokości i smukłości, znajdujące się pod działaniem
złożonych obciążeń aerodynamicznych, wynikających z działania wiatru.
Obciążenia działające na tego typu konstrukcje dodatkowo zmieniają się
w sytuacjach oblodzenia i zmian temperatury. Uczenie maszynowe (z ang.
Machine Learning - ML) wykazuje duży potencjał w monitorowaniu stanu
technicznego konstrukcji (z ang. Structural Health Monitoring – SHM),
w szczególności wieżowych, poprzez wykrywanie uszkodzeń przy pomocy
metod wykorzystujących dane pomiarowe. Techniki ML oparte na analizie
drgań są szczególnie skuteczne w monitorowaniu elementów turbin wiatro-
wych, takich jak łopaty, wieża i przekładnia. Nieustanny rozwój technolo-
gii turbin wiatrowych, zmienne warunki środowiskowe, w których turbiny
się znajdują sprawiają, iż nadal istnieje potrzeba rozwijania metod zwią-
zanych z monitorowaniem konstrukcji w celu niezawodnej i bezawaryjnej
pracy turbin. Celem niniejszej pracy jest opracowanie metodyki uczenia
maszynowego opartego na pomierzonych parametrach pracy i odpowiedzi
turbin wiatrowych na działające obciążenia. W proponowanych rozwiąza-
niach algorytmicznych stosowane są rozpoznawanie wzorców, rozpoznawa-
nie uszkodzeń oraz ocena uszkodzeń elementów turbin wiatrowych. Zastoso-

195196:71462021



wano modele nadzorowanej regresji i klasyfikacji, w których przewidywano
wartości liczbowe na podstawie oznaczonych danych wyjściowych, a także
wykorzystano metody przekształcania surowych danych w zestaw istotnych
informacji wykorzystywanych w algorytmie uczenia maszynowego. W celu
poprawy wydajności i niezawodności modelu zastosowano metodę rozsze-
rzania danych (data augmentation). W pracy analizowano trzy przypadki
związane z zastosowaniem algorytmów monitorowania stanu technicznego
konstrukcji turbin wiatrowych. W pierwszej analizie przeprowadzono klasy-
fikację uszkodzeń turbiny wiatrowej podczas jej pracy. Analiza obejmowała
monitorowanie i ocenę trzech zdarzeń awaryjnych podczas pracy turbiny
wiatrowej Aventa, wykorzystując jako surowe dane monitorujące widmo cza-
sowe. W drugim przypadku zastosowany algorytm pozwalał na wykrywanie
zmian momentu dokręcenia połączenia śrubowego. Połączenia śrubowe są
bardzo istotne w konstrukcji turbin wiatrowych, gdyż segmenty stalowej
wieży turbiny wiatrowej łączone są przy pomocy kołnierzowego połącze-
nia śrubowego. W celu określenia zmian momentu dokręcenia zastosowano
sygnały spektralne w dziedzinie częstotliwości. Dane pochodziły z badań
laboratoryjnych. W tym przypadku łączono techniki nadzorowane i nie-
nadzorowane. Na podstawie odpowiedzi dynamicznej określono wskaźniki
uszkodzenia. Trzeci przypadek obejmuje ocenę zmiany momentu dokręce-
nia łączników. Zastosowano algorytm regresyjny w połączeniu z metodą au-
gmentacji danych w celu dokładniejszego oszacowania luzowania momentu
dokręcenia na podstawie widma drgań. Uzyskane wyniki wykazały wysoką
dokładność w ocenie i klasyfikacji uszkodzeń, potwierdzając skuteczność
opracowanej metodyki monitorowania konstrukcji z zastosowaniem ucze-
nia maszynowego. Uzyskane rezultaty przyczyniają się do rozwoju metod
opartych na analizie danych pomiarowych do monitorowania stanu tech-
nicznego turbin wiatrowych, zwiększając ich niezawodność i bezpieczeństwo
użytkowania. Proponowane metody są szczególnie efektywne w ocenie stanu
technicznego konstrukcji i w przyszłości staną się podstawowym narzędziem
eksperckim w identyfikacji zmian konstrukcji budowlanych.
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RESUMO

MONITORAMENTO DA INTEGRIDADE ESTRUTURAL DE
COMPONENTES DE TURBINAS EÓLICAS UTILIZANDO

APRENDIZADO DE MÁQUINA

M.Sc. Jefferson da Silva Coelho

Palavras-chave: Aprendizado de máquina supervisionado e não supervi-
sionado, índice de danos, detecção de danos, quantificação de incertezas.

As turbinas eólicas são sistemas eletromecânicos complexos que exigem
monitoramento contínuo para garantir a eficiência operacional, minimizar
os custos e evitar falhas críticas. O ML tem se mostrado muito promissor no
SHM, automatizando a detecção de defeitos por meio de métodos orientados
por dados. As técnicas de ML baseadas em vibração são particularmente
eficazes para monitorar componentes de turbinas, como lâminas, torres e
caixas de engrenagens. No entanto, ainda há desafios para adaptar os méto-
dos SHM a condições ambientais complexas e garantir o monitoramento
confiável e a detecção de falhas. O objetivo deste trabalho é propor uma
metodologia de algoritmo de ML orientada por dados projetada para recon-
hecimento de padrões, detecção e quantificação de danos em componentes
de turbinas eólicas. Três estudos de caso foram propostos para validar a
abordagem SHM-ML. A abordagem proposta aproveitou os modelos de re-
gressão e classificação supervisionados, as técnicas de extração de recursos
e o aumento de dados para melhorar a robustez e a confiabilidade dos mod-
elos. O primeiro estudo monitorou e avaliou três eventos de falha durante
a operação de turbina eólica usando o espectro de tempo de aceleração
como dados brutos de monitoramento. O segundo caso concentrou-se na
detecção e classificação do afrouxamento de torque em juntas aparafusadas
com base em sinais espectrais de domínio de frequência de testes experi-
mentais, combinando técnicas supervisionadas e não supervisionadas com
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um índice de danos derivado da resposta dinâmica. O terceiro caso integra
algoritmos de regressão com técnicas de aumento de dados para melho-
rar a estimativa precisa do afrouxamento do torque usando espectros de
vibração brutos em estruturas aparafusadas. Os resultados demonstraram
alta precisão na estimativa e classificação de danos, validando a eficácia
da metodologia SHM-ML desenvolvida. Essas descobertas contribuem para
o avanço das abordagens orientadas por dados para o SHM de turbinas
eólicas, aumentando a confiabilidade e a segurança operacional.
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