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Streszczenie

W niniejszej rozprawie skupiono się na opracowaniu hybrydowych metod
ekstrakcji cech w celu poprawy skuteczności wykrywania dezinformacji w tek-
stach pochodzących z mediów cyfrowych. Problem dezinformacji, definiowany
jako celowe rozpowszechnianie fałszywych lub wprowadzających w błąd treści,
jest narastającym wyzwaniem, które może prowadzić do poważnych konsekwen-
cji społecznych i politycznych. Tradycyjne metody ekstrakcji i klasyfikacji treści
często okazują się niewystarczające do uchwycenia złożonych relacji semantycz-
nych i kontekstualnych w tekstach, co utrudnia skuteczną detekcję dezinformacji.
Rozprawa ta proponuje połączenie różnych podejść, aby lepiej uchwycić zarówno
lokalne, jak i globalne wzorce obecne w tekście. W ramach rozprawy opracowano
i zbadano dwie autorskie, innowacyjne metody:

• LFM (Learned Fusion Method) – która znacząco poprawiła skuteczność
detekcji dezinformacji, dodatkowo rozwiązując problem niezbalansowa-
nych danych w stosunku do metod referencyjnych. Architektura rozwiązania
opiera się na ekstrakcji cech semantycznych za pomocą modelu DistilBERT
oraz statystycznych przy użyciu metody TF-IDF. Integracja obu wektorów
odbywa się w ramach sieci neuronowej typu enkoder.

• GEM (Graph Embedding Method) – również znacząco poprawiająca sku-
teczność detekcji w stosunku do metod referencyjnych. Model generuje re-
prezentacje wektorowe na podstawie czterech wyspecjalizowanych grafów,
z których każdy odpowiada za analizę określonego aspektu tekstu: spój-
ności, wynikania logicznego, relacji przyczynowo-skutkowych oraz wiedzy
zewnętrznej. Wynikowe osadzenia są integrowane za pomocą konkatenacji,
tworząc wspólny wektor cech wykorzystywany w końcowej detekcji.

Eksperymenty przeprowadzone na pięciu zbiorach danych, zarówno polskoję-
zycznych, jak i anglojęzycznych, o zróżnicowanej strukturze i stopniu zbalansowa-
nia, konsekwentnie potwierdziły hipotezę badawczą, że możliwe jest opracowanie
hybrydowych metod ekstrakcji cech w celu podniesienia skuteczności detekcji
dezinformacji w tekstach względem metod klasycznych. Uzyskane wyniki mają
istotny potencjał praktyczny, gdyż mogą zostać wykorzystane w zaawansowanych
narzędziach do automatycznej detekcji dezinformacji i przeciwdziałania jej roz-
przestrzenianiu się.
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Abstract

In this thesis, focuses on the development of hybrid feature extraction methods
to improve the detection of disinformation in texts sourced from digital media.
The problem of disinformation, defined as the intentional dissemination of false
or misleading content, is a growing challenge that can lead to serious social and
political consequences. Traditional extraction and classification methods often
prove insufficient to capture the complex semantic and contextual relationships in
texts, making effective disinformation detection difficult. This thesis proposes a
combination of different approaches to better capture both local and global patterns
present in text.

Two innovative methods were developed and tested as part of this thesis:

• LFM (Learned Fusion Method) – which significantly improved the detec-
tion of disinformation, further addressing the issue of data imbalance. The
solution’s architecture is based on the extraction of semantic features using
the DistilBERT model and statistical features using the TF-IDF method. In-
tegration of both vectors takes place within an encoder-type neural network.

• GEM (Graph Embedding Method) – which also significantly improved the
detection performance. The model generates vector representations based
on four specialized graphs, each responsible for analyzing a specific aspect
of the text: coherence, logical entailment, cause-and-effect relationships,
and external knowledge. The resulting embeddings are integrated using
concatenation, creating a common feature vector used in the final detection.

Experiments conducted on five datasets, both Polish and English, with varying
structures and levels of balance, consistently confirmed the research hypothesis
that it is possible to develop hybrid feature extraction methods to improve the
detection of disinformation in texts compared to traditional methods. The obta-
ined results have significant practical implications, offering advanced tools for
automatic disinformation detection and counteracting its spread.
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1. Wstęp

1.1 Aktualność tematu

Współczesna rzeczywistość informacyjna charakteryzuje się rosnącą ilością
danych generowanych w mediach cyfrowych, zwłaszcza w mediach społeczno-
ściowych, portalach informacyjnych i blogach. Zjawisko to prowadzi do łatwej
dystrybucji nieprawdziwych informacji, co stanowi poważne wyzwanie dla społe-
czeństwa, rządów oraz firm technologicznych. Dezinformacja to złożone zagad-
nienie, które może przyjmować różne formy. Jednym z głównych celów dezin-
formacji jest celowe rozpowszechnianie fałszywych lub wprowadzających w błąd
treści. Staje się ona coraz bardziej powszechnym problemem i może prowadzić do
negatywnych skutków społecznych, takich jak destabilizacja polityczna, podziały
społeczne (polaryzacja), a nawet zagrożenia dla zdrowia publicznego, jak miało to
miejsce podczas pandemii COVID-19. Współczesna dezinformacja często wyko-
rzystuje różne modalności przekazu takie jak tekst, obraz, dźwięk, a coraz częściej
także format wideo. Wielomodalne treści zwiększają siłę oddziaływania przekazu,
ponieważ angażują odbiorcę na wielu poziomach percepcji jednocześnie, co może
wzmacniać jego podatność na manipulację.

Problem detekcji dezinformacji stawia przed badaczami liczne wyzwania,
które wynikają m.in. z natury danych tekstowych, czy też kontekstu. W szczegól-
ności trudność polega na identyfikacji subtelnych różnic między prawdziwymi a
fałszywymi wiadomościami, które mogą być trudne do odróżnienia dla tradycyj-
nych algorytmów klasyfikacyjnych. W tym kontekście kluczowym aspektem jest
efektywna ekstrakcja cech, czyli proces przekształcania surowych danych teksto-
wych w reprezentacje numeryczne, które mogą być wykorzystane przez algorytmy
uczenia maszynowego. Dotychczas stosowane metody, takie jak analiza częstotli-
wości występowania terminów (np. TF-IDF), modele wektorowe (np. Word2Vec,
GloVe) czy metody oparte o transformery (np. BERT, GPT), choć skuteczne w
wielu przypadkach, mogą być niewystarczające do wychwytywania złożonych re-
lacji semantycznych i kontekstowych.

Podjęcie tematu zastosowania hybrydowych metod ekstrakcji cech w detekcji
dezinformacji pozwala na zbadanie możliwości połączenia różnych podejść w
celu zwiększenia efektywności modeli detekcji. Dzięki temu możliwe jest lepsze
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uchwycenie zarówno lokalnych, jak i globalnych wzorców obecnych w tekście, co
może prowadzić do wyższej skuteczności i precyzji w detekcji dezinformacji.

Ponadto hybrydowe metody ekstrakcji cech mogą zminimalizować problemy
związane z przetwarzaniem i interpretacją stosunkowo małych zbiorów danych
oraz ograniczyć moce obliczeniowe. Oprócz optymalizacji procesów obliczenio-
wych ekstrakcja istotnych cech zmniejsza ryzyko przeuczenia modeli, co jest szcze-
gólnie istotne w zadaniach, gdzie dostępne są ograniczone zasoby danych. Metody
te pozwalają także na uchwycenie złożonych relacji semantycznych, subtelnych
różnic w znaczeniu oraz adaptacji do dynamicznie zmieniających się wzorców
informacji.

Warto również nadmienić, że odpowiednia reprezentacja cech wpływa na to,
jak model interpretuje dane i uczy się na ich podstawie. Jeśli cechy są dobrze
zdefiniowane, model jest w stanie zidentyfikować istotne wzorce, co znacząco
poprawia jego wydajność i zdolność do rozwiązywania problemu, szczególnie w
kontekście detekcji dezinformacji.

Dodatkowym aspektem motywującym podjęcie tego tematu jest dynamiczny
rozwój technologii przetwarzania języka naturalnego (ang. natural language pro-
cessing, NLP) oraz rosnące zainteresowanie sztuczną inteligencją w zadaniach
związanych z analizą tekstu. Wprowadzenie hybrydowych metod ekstrakcji cech,
obejmujących zarówno klasyczne techniki lingwistyczne, jak i nowoczesne mo-
dele uczenia maszynowego, może przynieść istotne korzyści dla dziedziny detekcji
dezinformacji. Potencjalne implikacje tej pracy obejmują poprawę skuteczności
narzędzi do analizy danych tekstowych oraz przeciwdziałanie szerzeniu się dezin-
formacji w sposób bardziej efektywny i skalowalny.

1.2 Cel, hipoteza i zakres pracy

Cel pracy

Celem niniejszej rozprawy jest opracowanie i empiryczna weryfikacja au-
torskich, hybrydowych metod ekstrakcji cech tekstu, łączących podejścia seman-
tyczne, kontekstowe i strukturalne, w celu zwiększenia skuteczności detekcji dez-
informacji.
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Hipoteza i zakres pracy

Uwzględniając wyniki analizy literatury oraz potrzebę zwiększenia skutecz-
ności metod detekcji dezinformacji, postawiono następującą hipotezę badawczą:

Zastosowanie hybrydowych metod ekstrakcji cech, łączących reprezenta-
cje semantyczne, logiczne, kontekstowe, przyczynowo-skutkowe oraz me-
chanizmy adaptacyjnego łączenia wektorów osadzeń, pozwala na istotne
zwiększenie skuteczności detekcji dezinformacji w porównaniu z podej-
ściami opartymi wyłącznie na modelach transformerowych.

W celu weryfikacji postawionej hipotezy oraz realizacji głównego celu pracy
wyznaczono następujące zadania badawcze:

1. Opracowanie hybrydowej metody ekstrakcji cech uwzględniającej strukturę
leksykalną oraz kontekst semantyczny.

2. Opracowanie metody łączącej informacje semantyczne, logiczne, kontek-
stowe oraz przyczynowo-skutkowe w celu poprawy jakości ekstrakcji cech.

3. Zaprojektowanie mechanizmu adaptacji wag, którego celem jest dostoso-
wanie znaczenia poszczególnych typów reprezentacji (semantycznej oraz
leksykalnej).

4. Badanie skuteczności metod hybrydowych w detekcji dezinformacji w po-
równaniu z referencyjnym podejściem opartym wyłącznie na modelach
transformerowych.

5. Przeprowadzenie eksperymentalnej ewaluacji proponowanych metod hybry-
dowych w zestawieniu z innymi podejściami detekcji dezinformacji opisa-
nymi w literaturze.

1.3 Struktura pracy

Niniejsza praca składa się z 6 rozdziałów. Pierwszy rozdział stanowi wstęp do
pracy, gdzie przedstawiono motywację, a także hipotezę i cel pracy. W rozdziale
2 znajduje się przegląd literatury bezpośrednio związany z tematem niniejszej
rozprawy. Omówione zostały w nim podejścia dotyczące ekstrakcji cech w pro-
blemach dezinformacji. W rozdziale 3 zaprezentowano własne propozycje metod
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ekstrakcji cech. Z kolei rozdział 4 zawiera omówienie metodyki badań oraz charak-
terystyką zbiorów danych. W rozdziale 5 zaprezentowano wyniki przeprowadzo-
nych badań dla polskich i angielskich zbiorów danych. Rozprawa zakończona jest
rozdziałem 6, w którym podsumowano uzyskane wyniki oraz opisano wnioski.

1.4 Główne wyniki uzyskane w pracy

Do najważniejszych wyników zawartych w rozprawie zaliczam:

1. Opracowanie hybrydowej metody ekstrakcji cech uwzględniającej strukturę
leksykalną oraz kontekst semantyczny - metoda LFM.

2. Opracowanie metody łączącej informacje semantyczne, logiczne, kontek-
stowe oraz przyczynowo-skutkowe w celu poprawy jakości ekstrakcji cech
- metoda GEM.

3. Zaprojektowanie mechanizmu adaptacji wag, którego celem jest dostoso-
wanie znaczenia poszczególnych typów reprezentacji - FusionEncoder w
metodzie LFM.

4. Uzyskanie zbalansowanej dokładności wyższej o około 14% - 18% w od-
niesieniu do metody opartej wyłącznie na modelach transformerowych.

1.5 Publikacje autora związane z tematyką rozprawy

Poniższe publikacje, w których autor rozprawy miał istotny udział, stanowią
spójny dorobek badawczy rozwijający zagadnienia przedstawione w rozprawie. Są
one bezpośrednio powiązane z zagadnieniami przedstawionymi w rozdziałach 3
(Opracowane hybrydowe metody ekstrakcji cech tekstu) oraz 4 (Metodyka badań
i procedura eksperymentalna) niniejszej rozprawy doktorskiej. Przedstawione w
nich badania dokumentują kolejne etapy ewolucji metod detekcji dezinformacji.

Lista publikacji powiązanych z tematem rozprawy

Publikacje wykazane w niniejszej sekcji stanowią podstawy teoretyczne i
empiryczne, na których oparto niniejsze badania. Przyczyniły się one także do
powstania autorskich metod opisanych szczegółowo w tej pracy.
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Udział w projektach badawczych
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2. Analiza stanu wiedzy w zakresie
metod detekcji dezinformacji

Problematyka badawcza dotycząca wykrywania dezinformacji stanowi zło-
żone i wieloaspektowe zagadnienie obejmujące szereg wyzwań związanych z de-
tekcją, analizą oraz identyfikacją fałszywych treści. Należy przy tym pamiętać, że
fałszywe wiadomości mogą powstawać w sposób zamierzony, tak aby wprowadzić
odbiorcę w błąd [1], jak i niezamierzony wynikający z niestarannego doboru i
sposobu przekazu treści [2]. Istotny w tym aspekcie jest również fakt, że fałszywe
wiadomości rozprzestrzeniają się zdecydowanie szybciej niż wiadomości zawiera-
jące prawdziwe i rzetelne informacje [3]. Problem ten jest szczególnie widoczny w
wiadomościach o treściach politycznych [4] oraz ważnych aspektach zdrowia, co
miało miejsce podczas pandemii COVID-19 [5]. Dezinformacja dotyczy również
aspektów społeczno-gospodarczych i może z powodzeniem negatywnie wpływać
na kluczowe aspekty gospodarki, między innymi poprzez zaburzanie łańcucha
dostaw [6].

Nie należy zapominać jak istotną rolę w zakresie rozprzestrzeniania fałszy-
wych informacji, odgrywają media społecznościowe [7], gdyż dla wielu milionów
użytkowników na całym świecie stanowią one źródło różnego rodzaju wiadomo-
ści o zasięgu zarówno globalnym, jak i lokalnym [8]. Fałszywe wiadomości mogą
mieć przy tym różnorodną postać (tekst, obraz, nagrania audio i wideo). W niniej-
szej pracy skupiono się wyłącznie na tekście. Oczywiście w świetle powyższych
faktów związanych z fake newsami podstawą jest ich prawidłowa detekcja.

W niniejszym rozdziale przedstawione zostaną zagadnienia związane z pro-
blematyką wykrywania dezinformacji, ze szczególnym uwzględnieniem technik
wstępnego przetwarzania tekstu oraz metod klasyfikacji tekstu stosowanych w celu
detekcji fałszywych informacji.

2.1 Problematyka dezinformacji

Fałszywe informacje (ang. fake news), dezinformacja (ang. dissinformation) i
informacje wprowadzające w błąd (ang. misinformation) to pojęcia wskazujące na
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wspólne zjawisko zakłócenia rzetelnego obiegu informacji w społeczeństwie. Jest
ono narastającym problemem [9] szczególnie w dobie rozwoju usług cyfrowych,
popularności platform społecznościowych i portali internetowych, które sprzy-
jają możliwości ich szybkiego rozprzestrzeniania się. Jest to nie tylko problem
społeczny, ale co należy również mieć na uwadze, przyczynia się do zagrożeń
związanych z cyberbezpieczeństwem.

Problem jest istotny, co znajduje swoje potwierdzenie w pracach i opracowa-
niach Komisji Parlamentu Europejskiego.

Według dokumentu: „Zwalczanie dezinformacji w internecie: podejście
europejskie” [10] dezinformację definiuje się jako informacje, które można
zweryfikować jako fałszywe lub wprowadzające w błąd, a które są celowo
tworzone, rozpowszechniane i prezentowane w sposób mający na celu osią-
gnięcie zysków finansowych lub świadome wprowadzenie społeczeństwa
w błąd, co może prowadzić do szkody dla interesu publicznego.

W pracy poświęconej definicji fałszywych informacji [11] określa się je jako
celowe przedstawianie (zwykle) fałszywych lub wprowadzających w błąd twier-
dzeń jako wiadomości, które są mylące, a jednocześnie manipulują procesami po-
znawczymi odbiorców. Jak słusznie zauważono w pracy [12] fałszywe informacje
przybierają postać fałszywych stwierdzeń, które mogą być lub nie być powiązane z
prawdziwymi wydarzeniami, przybierając często formę sensacyjnych nagłówków,
zmanipulowanych obrazów lub celowo zniekształconej treści. Ich głównym celem
jest przyciągnięcie uwagi odbiorcy, skłonienie go do kliknięcia, udostępnienia lub
dalszego rozpowszechnienia przekazu. To zjawisko z kolei określane jest mianem
clickbaitu [13].

Ponadto, w przypadku rozprzestrzeniania się dezinformacji, istotne jest to, że
gdy fałszywa informacja zostaje opublikowana na platformie internetowej, często
dochodzi do jej szybkiego rozpowszechnienia za pośrednictwem mechanizmów
udostępniania i rekomendacji treści, co prowadzi do powstania gęstej sieci po-
wiązań między użytkownikami, artykułami, a także źródłami [14]. W takiej sieci
można zaobserwować powtarzalność określonych narracji, obecność tych samych
autorów lub domen internetowych, a także korelacje tematyczne między różnymi
wpisami, co może świadczyć o zamierzonym działaniu mającym na celu ma-
nipulację informacyjną. Wykorzystując narzędzia sztucznej inteligencji, w tym
algorytmy przetwarzania języka naturalnego oraz analizę grafów, możliwe jest
identyfikowanie struktur rozpowszechniania dezinformacji [15].
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Zjawisko dezinformacji jest przedmiotem badań wielu dyscyplin naukowych,
jednak istotny wkład w jego wykrywanie wnoszą badania z zakresu informatyki
[16]. Szczególnie widoczne jest to w liczbie badań prowadzonych, które koncen-
trują się na wykrywaniu i analizie cech dezinformacji – aż 168 z 351 analizowanych
empirycznych tematów badawczych, zidentyfikowanych przez autorów pochodzi z
tej dziedziny [16]. Co więcej, informatyka zdecydowanie dominuje pod względem
stosowania metod obliczeniowych (w 180 z 232 analizowanych badań [16]), co
pokazuje, jak istotny wkład mają metody komputerowe w identyfikację dezinfor-
macji.

W ostatnich latach obserwuje się dynamiczny rozwój dużych modeli języko-
wych (ang. large language model, LLM) oraz ich szerokie zastosowanie. Modele te
będące zaawansowanymi modelami głębokiego uczenia maszynowego pozwalają
na generowanie oraz interpretację ludzkiego języka. Poprzez architekturę opartą
na transformerach modele te (w zadaniach analizy i detekcji fałszywych infor-
macji) pozwalają rozpoznawać wzorce językowe i semantyczne (wskazujące na
manipulację [17]) oraz weryfikować fakty poprzez porównanie ich z szeroką bazą
dokumentów tekstowych [18]. Jednocześnie autorzy pracy [19] wskazują, że w
zadaniach klasyfikacji tekstu modele z rodziny BERT mogą osiągać lepsze wyniki
niż duże modele językowe w zadaniach opartych na analizie wzorców. Ich bada-
nia sugerują jednak, że w sytuacjach, gdy potrzebna jest dodatkowa wiedza lub
głębsza semantyka, modele LLM charakteryzują się większą skutecznością.

2.2 Wykrywanie dezinformacji

W celu uporządkowania obszaru badań w zakresie dezinformacji, autorzy
licznych publikacji podejmują próby systematyzacji istniejących podejść, propo-
nując różnorodne klasyfikacje metod wykrywania dezinformacji. Opracowania te
różnią się stopniem szczegółowości oraz przyjętymi kryteriami podziału, jednak
ich wspólnym celem pozostaje pogłębione zrozumienie mechanizmów determinu-
jących skuteczną identyfikację treści nieprawdziwych.

Detekcja fałszywych informacji w tekście może być rozpatrywana jako szcze-
gólny przypadek problemu klasyfikacji tekstu [20]. W pracy [21] zaproponowany
został podział na 3 główne metody:

• oparte na wiedzy (ang. knowledge-based), które wykorzystują zewnętrzne
źródła wiedzy, takie jak bazy danych faktów, ontologie czy repozytoria in-
formacji, wiedzę ekspertów w celu porównania treści analizowanego tekstu
z ustalonymi faktami;
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• oparte na cechach (ang. feature-based), które koncentrują się na analizie
wewnętrznych cech tekstu (np. statystyk lingwistycznych, składniowych lub
semantycznych), bez odniesienia do wiedzy zewnętrznej;

• oparte na modalności (ang. modality-based), które integrują informacje
pochodzące z różnych źródeł danych (np. tekst, obraz, dźwięk).

W kolejnych artykułach zastał dostarczony bardziej szczegółowy podział, jak na
przykład w pracy [22], gdzie zostały wyróżnione następujące metody:

• strategia oparta na wiedzy (ang. knowledge-based strategy), odnoszące się
do wykorzystania istniejących faktów oraz technik weryfikacji faktów;

• podejście lingwistyczne (ang. language approach), skupiające się na ana-
lizie struktury językowej, stylu wypowiedzi, używanego słownictwa czy
wykrywania charakterystycznych wzorców retorycznych;

• podejście niezależne od tematu (ang. topic-agnostic approach), które kon-
centrują się na wykrywaniu dezinformacji bez względu na konkretną tema-
tykę tekstu, dzięki czemu mogą być stosowane uniwersalnie;

• metoda hybrydowa (ang. hybrid method), łączące różne strategie w celu
zwiększenia skuteczności detekcji dezinformacji;

• podejście wykorzystujące uczenie maszynowe (ang. machine learning ap-
proach), w którym modele uczone na dużych zbiorach danych uczą się
rozróżniać pomiędzy treściami prawdziwymi a fałszywymi na podstawie
wzorców zawartych w danych treningowych.

W związku ze znaczną dynamiką powstawania dezinformacji niezbędne staje
się zastosowanie wieloaspektowego podejścia do ich wykrywania. Podejście bazu-
jące na wiedzy dotyczy sytuacji, w których wiarygodność informacji oceniana jest
na podstawie wiedzy eksperckiej oraz analiz, jak również porównywania wiado-
mości z wiarygodnymi źródłami [23]. Podejście językowe oraz metody bazujące
na cechach opierają się na analizie stylu pisania, gramatyki często połączonej z
analizą emocji zawartych w tekście, jak i poszukiwaniu nieścisłości lub sprzecz-
ności w sformułowaniach. Często również w przypadku tych metod stosowana
jest analiza struktury zdań, częstość używanych słów czy analiza statystyk tekstu
[24, 25].

W odniesieniu do wcześniej opisanych metod wykrywania dezinformacji
istotną rolę odgrywają techniki przetwarzania języka naturalnego, wspierane przez
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rozwiązania z zakresu sztucznej inteligencji, a w szczególności uczenia maszyno-
wego [26].

Techniki przetwarzania języka naturalnego wykorzystywane są m.in. w zada-
niach klasyfikacji tekstu, polegających na przypisywaniu dokumentom jednej lub
wielu kategorii tematycznych na podstawie ich treści. Takie podejście pozwala na
systematyczne porządkowanie informacji oraz ocenę ich zgodności z zaufanymi
źródłami, co stanowi istotne wsparcie dla metod bazujących na wiedzy, analizie
językowej oraz cechach tekstu [27].

Na rysunku 2.1 przedstawiono schemat procesu klasyfikacji tekstu w celu wy-
krywania dezinformacji. Obejmuje on kilka etapów, mających na celu przypisanie
dokumentowi jednej lub wielu klas na podstawie jego treści. Do kluczowych faz
tego procesu należą: wstępne przetwarzanie danych, tokenizacja, ekstrakcja cech,
trenowanie modelu oraz jego ewaluacja.

Rysunek 2.1: Etapy procesu tworzenia modelu służącego do klasyfikacji tekstu.
[Opracowanie własne]
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Wstępne przetwarzanie danych (ang. preprocessing) ma na celu oczyszczenie
i normalizację danych tekstowych w celu redukcji szumu informacyjnego oraz
ujednolicenia reprezentacji tekstu [28]. Typowe operacje obejmują m.in.: usuwanie
znaków specjalnych, liczb i słów przystankowych (ang. stopwords), sprowadzanie
słów do formy podstawowej - lematyzacja lub stemming [29], konwersję do małych
liter (ang. lowercasing), usuwanie nadmiarowych białych znaków.

Tokenizacja polega na podziale ciągu znaków na mniejsze jednostki zwane
tokenami, którymi najczęściej są słowa, podsłowa lub znaki. W zależności od mo-
delu i języka stosuje się różne strategie tokenizacji [30], takie jak na przykład:
whitespace tokenization, Byte-Pair Encoding (BPE) [31], WordPiece [32], Sen-
tencePiece [33] czy SaGe [34]. Tokeny stanowią podstawową jednostkę dalszego
przetwarzania.

Ekstrakcja cech tekstu jest kluczowym etapem w wykrywaniu dezinformacji
oraz szerzej, w zadaniach przetwarzania języka naturalnego. W przypadku detekcji
dezinformacji ekstrakcja cech polega na wydobyciu reprezentatywnych informacji
z tekstu, które mogą być użyte do oceny prawdziwości, intencji lub stylu zawar-
tego w nim przekazu. To z kolei jest istotnym wyzwaniem w celu zapewnienia
autentyczności i szeroko rozumianego cyberbezpieczeństwa oraz bezpieczeństwa
społeczeństwa.

Wśród technik ekstrakcji cech [35] wyróżnia się metody podstawowe, takie
jak:

• n-gram [36] do modelowania sekwencji słów lub znaków w tekście;

• bag-o-words [37] gdzie tekst jest reprezentowany przez zbiór słów;

• metoda TF służąca do obliczenia częstotliwości występowania słowa w
tekście [38];

• TF-IDF [39] jako rozbudowana metoda gdzie oceniane jest również znacze-
nie i ważność słowa w tekście.

Z kolei do bardziej zaawansowanych metod zalicza się metody obejmujące trans-
formery [40] takie jak BERT [41], RoBERTa [42], DistilBERT [43]. Dodatkowo
warto wskazać, że w literaturze znajdują się prace wskazujące, że metody ekstrak-
cji cech oparte na modelach transformerowych, takich jak BERT, przewyższają
pod względem dokładności klasyczne podejścia bazujące na TF-IDF [44]. Umoż-
liwiają one dwukierunkową reprezentację tekstu, gdzie znaczenie poszczególnych
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jednostek językowych jest modelowane z uwzględnieniem zarówno kontekstu po-
przedzającego, jak i następującego w sekwencji. Dzięki tym właściwościom mo-
dele transformerowe znajdują zastosowanie nie tylko w zadaniach klasyfikacji
tekstu, lecz także w innych zagadnieniach NLP, między innymi takich jak:

• analiza emocji w tekście (ang. text sentiment analysis) [45, 46];

• udzielanie odpowiedzi na pytania (ang. question answering) [47].

W zadaniach przetwarzania języka naturalnego oraz klasyfikacji tekstu istotne
są hybrydowe techniki ekstrakcji cech, które integrując różnorodne podejścia ana-
lityczne, jednocześnie wykazują się zwiększoną skutecznością klasyfikacyjną, co
zostało potwierdzone m.in. w pracy [48]. Szczegółowego omówienia istniejących
technik ekstrakcji cech dokonano w [49]. Autorzy pracy wskazali na połączenie
technik takich jak: TF, TF-IDF, Word2Vec, BERT, które następnie są wykorzy-
stywane w połączeniu z klasyfikatorami, takimi jak SVM, KNN, Random Forest,
AdaBoost, XGBoost, MLP czy splotowe sieci neuronowe (ang. convolutional neu-
ral networks, CNN) [50]. Literatura przedmiotu dostarcza również przykładów
metod łączących różne techniki ekstrakcji cech, np. TF-IDF, Word2Vec oraz sieci
LSTM (ang. Long Short-Term Memory) [51]. Bardziej zaawansowane podejścia
wykorzystują osadzanie węzłów kontekstowych (ang. contextual node embedding),
grafy hierarchiczne oraz dynamiczną fuzję z wykorzystaniem BERT [52].

Na Rysunku 2.2 graficznie przedstawiono omówione metody wykrywania
dezinformacji. Zobrazowano na nim podział technik na cztery główne kategorie:
analizę treści, analizę propagacji, analizę kontekstu oraz podejścia hybrydowe,
które łączą w sobie elementy z pozostałych grup. Każda z tych kategorii obejmuje
szereg specyficznych technik, od analizy cech językowych i wizualnych, przez
ręczne i automatyczne sprawdzanie faktów, po modelowanie dynamiki rozprze-
strzeniania się informacji w sieciach oraz ocenę wiarygodności źródeł.
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Rysunek 2.2: Przegląd technik wykrywania dezinformacji (na podstawie [53])

W celu usystematyzowania informacji na temat metod służących wykrywaniu
fałszywych wiadomości w różnych językach oraz zbiorów danych (na których tre-
nowano modele) opracowano tabelę 2.1. Przedstawione w niej prace koncentrują
się na wykorzystywaniu różnych modeli uczenia maszynowego i głębokiego ucze-
nia do poprawy dokładności wykrywania dezinformacji głównie w wiadomościach
i postach oraz mediach społecznościowych.

Tabela 2.1: Podsumowanie zbiorów danych i technologii do wykrywania fałszy-
wych wiadomości w różnych językach

Autorzy Język Dane Technologia Rok
Martínez-
Gallego et
al. [54]

Hiszpański Spanish Fake News
Corpus (971 wiado-
mości) + Fake news
in Spanish (1600
wiadomości), łącz-
nie 2571 próbek

BETO + LSTM 2021

Blanco-
Fernández
et al. [55]

Hiszpański Syntetyczny zbiór
57 231 artykułów
politycznych – dane
uzyskane przez web
scraping i modele
generatywne

Fine-tuned BERT /
RoBERTa

2024

19

19:92693036



Autorzy Język Dane Technologia Rok
Ibañez-
Lissen et
al. [56]

Hiszpański Zbiory danych z
wiadomości i me-
diów społecznościo-
wych (fałszywe wia-
domości polityczne)

GCN + BERT 2024

Moreno-
Vallejo et
al. [57]

Hiszpański Dane z mediów spo-
łecznościowych i ar-
tykułów prasowych

Porównanie MLP,
CNN, LSTM

2023

Catelli et
al. [58]

Włoski Recenzje dotyczące
dziedzictwa kultu-
rowego we Wło-
szech

BERT + ELEC-
TRA + analiza sen-
tymentu

2023

Buzea et al.
[59]

Rumuński Wiadomości online
po rumuńsku

SVM, NB, LSTM,
CNN, GRU, Ro-
BERT

2022

Bucos et al.
[60]

Rumuński Dane z Factual.ro Back Transla-
tion, Easy Data
Augmentation

2023

Dinu et al.
[61]

Rumuński Rumuńskie wiado-
mości online

LR, SVM, RF, SD
Classifier

2022

Valeanu et
al. [62]

Rumuński Rumuńskie tweety
nt. szczepień

SVM, MLP, RF,
RCNN, BERT

2023

Daria-
Mihaela et
al. [?]

Rumuński RoCliCo: 8313 ar-
tykułów prasowych
(clickbait)

RF, SVM, BiLSTM,
Ro-BERT

2023

Moisi et al.
[63]

Rumuński FakeRom – 1000+
artykułów z Veri-
dica

NB, LR, SVM,
BERT

2024

Farooq et
al. [64]

Urdu 4097 wiadomości z
9 dziedzin

TF-IDF, BoW,
SVM, k-NN

2023

Iqbal et al.
[65]

Urdu 12 047 tweetów TF, IDF, SVM,
CNN, RNN

2024

Munir et al.
[66]

Urdu Tekst + obrazy - 2024

Al Ghamdi
et al. [67]

Ang., Arb.,
Urdu

Twitter, artykuły on-
line

TF-IDF, LR, BERT,
RF

2023

Harris et al.
[68]

Urdu UrduFake@FIRE2020:
1300 wiadomości

ELECTRA,
mBERT, XLM-
R

2025

20
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Autorzy Język Dane Technologia Rok
Sorour et
al. [69]

Arabski 1475 prawdziwych,
3152 fałszywych
wiadomości

CNN + LSTM 2022

Azzeh et
al. [70]

Arabski Dane z sieci i Twit-
tera

AraBERT, MAR-
BERT, SVM, NB

2025

Almandouh
et al. [71]

Arabski 228 461 rekordów z
arabskich zbiorów

FastText, LR, XGB,
AdaBoost

2024

Mohawesh
et al. [72]

Wielo-
języczny

ENG-HIN, ENG-
IDN, ENG-SWA,
ENG-VIE

Capsule NN,
mBERT, XLM-R

2023

Keya et al.
[73]

Angielski WelFake, LIAR BERT, FakeStack 2023

Han et al.
[74]

Angielski FakeNewsNet (poli-
tifact, gossipcop)

Grafowe sieci neu-
ronowe

2020

Lu et al.
[75]

Angielski Twitter15, Twitter16 Sieć ko-uwagi +
grafy

2020

Roy et al.
[76]

Bengalski BanFakeNews Bi-GRU 2024

Malla et al.
[77]

Angielski FakeNewsNet, Gos-
sip, tweet’y

GAT 2024

Frisli [78] Norweski 426 262 tweet’y
COVID-19 (5,11%
dezinformacja)

Semi-supervised LR
+ class weights

2025

Wanda et
al. [79]

Indonezyjski Fałszywe wiadomo-
ści po indonezyjsku

GRN (Generative
Round Networks)

2024

Canhasi et
al. [80]

Albański Albańskie ozna-
czone wiadomości

LR, NB, SVM,
XGBoost

2022

Isa et al.
[81]

Indonezyjski COVID-19 news
(Indonezja)

IndoBERT 2022

Dinu, Fusu i Gifu [61] zaprezentowali w swojej pracy podejście wykorzy-
stujące klasyfikatory SVM i regresję logistyczną (ang. logistic regression, LR)
oraz techniki przetwarzania tekstu takie jak TF-IDF i 300-wymiarowe osadzenia
wektorowe CoRoLa. Autorzy w pracy skupili się na języku rumuńskim, a naj-
lepsze wyniki uzyskali przy użyciu SVM i LR. Valeanu et al. [62] w podobny
sposób zaprezentowali metodę wykrywania dezinformacji na podstawie postów z
platformy Twitter o szczepieniach z wykorzystaniem metod takich jak SVM, MLP
i las losowy (ang. random forest, RF). Zaproponowane metody osiągnęły wyniki
AUC zakresie od 0.744 do 0.858, co wskazuje na wysoką wydajność algorytmów
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klasyfikacyjnych.

Bucos i T, ucudean [60] użyli zbioru danych Veridica z rumuńskimi artykułami
prasowymi do analizy fałszywych wiadomości. W swoim badaniu wykorzystali
klasyfikatory, takie jak ekstremalnie losowe drzewa (ang. extremely randomized
trees, Extra Trees), RF i SVM, uzyskując najlepsze wyniki przy użyciu techniki
Back Translation. Moisi, T, ucudean i Ionescu [63] zaprezentowali podejście wy-
korzystujące BiLSTM i RoBERTa-large do wykrywania fałszywych wiadomości
w rumuńskim, osiągając dokładność 96.5% dla modelu opartego na BERT.

W zakresie języka arabskiego, Al Ghamdi et al. [67] zebrali dane z Twittera
i artykułów, tworząc korpus, który zawiera zarówno fałszywe, jak i prawdziwe
wiadomości. Analizowali różne modele klasyfikacyjne, takie jak Naive Bayes, Lo-
gistic Regression, SVM i BERT, osiągając dokładność 90% przy użyciu modelu
BERT. Sorour i Abdelkader[69] zastosowali podejście hybrydowe, wykorzystu-
jąc CNN i LSTM do wykrywania fałszywych wiadomości w języku arabskim,
osiągając dokładność 81%.

Harris, Hadi, Ahmad et al. [68] opracowali model wykrywania fałszywych
wiadomości dla języka urdu, wykorzystując zbiory danych UrduFake@FIRE2020,
które zawierały zarówno prawdziwe, jak i fałszywe wiadomości z pięciu dziedzin:
zdrowie, sport, rozrywka, technologia oraz biznes. Użyli modeli, takich jak ELEC-
TRA, mBERT i XLM-RoBERTa, osiągając dokładność 91,4% przy użyciu metody
ensemble.

W pracy Azzeh, Qusef i Alabboushi [70], autorzy użyli sześciu technik repre-
zentacji tekstu oraz pięciu głębokich modeli osadzenia słów, takich jak AraBERT,
AraELECTRA, ARBERT, MARBERT i CAMeLBERT, do wykrywania fałszy-
wych wiadomości w języku arabskim. Najlepsze wyniki uzyskano przy użyciu
CAMeLBERT połączonego z głęboką siecią neuronową (DNN), osiągając 𝐹1-
score na poziomie 71.3% i AUC 79.1%. Chociaż wiele badań koncentruje się na
pojedynczych językach, inne prace (np. [72]), uwzględniają wiele języków, takich
jak: angielski, hindi, suahili, wietnamski i indonezyjski. Ich podejście oparte było
na sieciach neuronowych kapsułkowych, które wykrywały fałszywe wiadomości z
poprawą o około 3.97% w porównaniu do modeli bazowych.

W kontekście języka angielskiego, Keya et al. [73] użyli osadzeń BERT w
połączeniu z głębokim CNN i LSTM w modelu FakeStack, który osiągnął dokład-
ność powyżej 97% w wykrywaniu fałszywych wiadomości. Han, Karunasekera
i Leckie [74] wykorzystali sieci neuronowe oparte na grafach (GNN) do analizy
wzorców rozprzestrzeniania się fałszywych wiadomości w sieci społecznościo-
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wej. Ich podejście, które uwzględniało dane z Twittera i cechy użytkowników,
osiągnęło dokładność 83%.

Wśród najnowszych prac w tej dziedzinie warto wspomnieć badania Roy et
al. [76], którzy stworzyli nową metodę wykrywania fałszywych wiadomości w
języku bengalskim, osiągając dokładność 99% przy użyciu modelu Bidirectional
Gated Recurrent Unit (GRU). Malla i Banka [77] zaprezentowali podejście wy-
korzystujące Graph Attention Networks (GAT), które uwzględniało preferencje
użytkowników i kontekst społeczny, osiągając dokładność 98%.

Inne innowacyjne podejścia obejmują pracę Frisli [78], gdzie zastosowano
półnadzorowane podejście do samodzielnego treningu w klasyfikacji dezinfor-
macji, osiągając dokładność powyżej 98%. Z kolei Wanda i Diqi [79] w swoim
badaniu nad językiem indonezyjskim wykorzystali nową architekturę Generative
Round Networks (GRN), osiągając dokładność 94,33%.

W przypadku języka albańskiego Canhasi et al. [80] użyli klasycznych technik
klasyfikacyjnych, takich jak KNN, XGBoost oraz osadzeń BERT i FastText do
wykrywania fałszywych wiadomości. Ich wyniki pokazały skuteczność metod
klasyfikacyjnych w tym języku. Z kolei dla języka indonezyjskiego, Isa, Nico
i Permana [81] użyli modelu IndoBERT, który osiągnął dokładność 94,66% w
wykrywaniu fałszywych wiadomości, szczególnie tych związanych z COVID-19.

Popularność w kontekście detekcji dezinformacji zdobywają heterogeniczne
grafy, które umożliwiają rozszerzenie możliwości dużych modeli językowych
(LLM) poprzez integrację różnych typów encji i relacji. Xie i in. [82] w swo-
jej pracy wykorzystali heterogeniczny graf zawierający węzły wiadomości, encji
i tematów do modelowania treści wiadomości. Wiedza z trzech grafów wiedzy
jest następnie łączona w celu wzbogacenia procesu decyzyjnego. Z kolei Kang
et al. [83] zastosowali podejście oparte na heterogenicznych grafach, aby wy-
korzystać różnorodne powiązania między wiadomościami, takie jak ich kontekst
czasowy, treść, tematykę i źródło, w celu identyfikacji fałszywych informacji. W
artykule zaproponowano budowę heterogenicznego grafu, nazwanego News De-
tection Graph (NDG), zawierającego różne typy węzłów i krawędzi, co pozwala na
integrację wieloaspektowych danych pochodzących z wielu wiadomości. Sun et al.
[84] wprowadza model wykrywania fałszywych wiadomości oparty na percepcji
tematu, gdzie określona wiadomość jest dzielona na zdania, a graf heterogeniczny
tworzony jest z węzłów reprezentujących zdania, tematy i encje. W dalszym etapie
następuje ekstrakcja cech i porównania encji w celu oceny spójności semantycznej.
Równie popularne jest stosowanie grafowych sieci neuronowych [85]. Karnyoto et
al. [86] w swojej pracy wykorzystali heterogeniczną grafową sieć neuronową do
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wykrywania dezinformacji na temat pandemii COVID19 [86]. Aby utworzyć sieć
neuronową grafu, zbudowali węzły i krawędzie w grafie, a także węzły słowo-słowo
i słowo-dokument.

2.3 Ograniczenia dotychczasowych podejść

Analiza literatury wskazuje na różnorodność metod i podejść skutecznych w
wykrywaniu fałszywych wiadomości, obejmujących zarówno klasyczne techniki,
jak i nowoczesne modele głębokiego uczenia, które osiągają zadowalające wyniki
w różnych językach i kontekstach. Przeprowadzony przegląd pozwala zidentyfi-
kować kilka istotnych obszarów wymagających dalszych badań.

Po pierwsze, zauważalne jest niewystarczające wykorzystanie grafów w języ-
kach innych niż angielski. Opisane w literaturze podejścia grafowe koncentrują się
głównie na anglojęzycznych źródłach informacji, podczas gdy potencjał zastoso-
wania grafów w językach mniej zasobnych pozostaje w dużej mierze niezbadany.

Po drugie, zauważalny jest niedostatek badań nad efektywnością hybrydo-
wych metod ekstrakcji cech. Choć wskazuje się na możliwość łączenia technik
takich jak TF-IDF, Word2Vec, BERT, CNN czy LSTM, brakuje systematycznych
analiz porównawczych, które oceniałyby skuteczność różnych konfiguracji w od-
miennych domenach i językach.

Po trzecie, istotnym ograniczeniem pozostaje silna zależność od niewielkich,
najczęściej binarnych zbiorów danych. Ogranicza to nie tylko możliwość porównań
między modelami, lecz także obniża potencjał uogólniania wyników na bardziej
zróżnicowane i rzeczywiste scenariusze.
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3. Opracowane hybrydowe metody
ekstrakcji cech tekstu

W niniejszym rozdziale przedstawiono dwie autorskie, hybrydowe metody
ekstrakcji cech, opracowane w ramach pracy. Pierwszą z nich jest metoda LFM,
szczegółowo opisana w podrozdziale 3.1, natomiast drugą – metoda GEM, któ-
rej charakterystyka znajduje się w podrozdziale 3.2. Podrozdziały te zawierają
również szczegółową charakterystykę metod składowych, wchodzących w skład
opracowanych podejść hybrydowych.

3.1 Metoda LFM (Learned Fusion Method)

Pierwszą zaproponowaną w rozprawie doktorskiej hybrydową metodą eks-
trakcji cech jest metoda LFM (Learned Fusion Method). Metoda ta wykorzystuje
model DistilBERT (opisany w podrozdziale 3.1.1.1) oraz statystyczną metodę
TF-IDF (opisaną w podrozdziale 3.1.1.2) w celu uzyskania reprezentacji tekstu
z uwzględnieniem zarówno struktury leksykalnej jak i kontekstu semantycznego.
Dodatkowo, w celu połączenia dwóch różnych reprezentacji wektorowych w jeden
spójny wektor, została opracowana sieć neuronowa typu encoder (określona jako
FusionEncoder). Metoda ta składa się z kilku etapów, które zostały przedstawione
na rysunku 3.1.

W pierwszym kroku reprezentacja wejściowa (każdy dokument tekstowy T)
jest przekształcana na dwa oddzielne wektory:

• Reprezentacja semantyczna za pomocą modelu DistilBERT:

𝑥𝑏𝑒𝑟𝑡 = 𝐷𝑖𝑠𝑡𝑖𝑙𝐵𝐸𝑅𝑇 (𝑇) ∈ R𝑑𝑏𝑒𝑟𝑡 (3.1)

gdzie 𝑑bert = 768

• Reprezentacja statystyczna za pomocą metody TF-IDF:

𝑥tfidf = TFIDF(𝑇) ∈ R𝑑tfidf (3.2)
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gdzie wartość parametru 𝑑tfidf została empirycznie ustalona na poziomie
500.

Końcowo oba wektory są łączone w jeden wspólny wektor zgodnie ze wzorem 3.3

𝑥 = [𝑥bert; 𝑥tfidf] ∈ R𝑑 (3.3)

gdzie 𝑑 = 𝑑bert + 𝑑tfidf.

Rysunek 3.1: Architektura metody LFM

Tak utworzony wektor 𝑥 jest następnie przekazywany do sieci neuronowej,
której zadaniem jest utworzenie wektora fuzji cech.
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3.1.1 Etapy generowania wektorów osadzeń

3.1.1.1 Reprezentacja uzyskana modelem DistilBERT

Model DistilBERT stanowiący zoptymalizowaną wersję modelu BERT ce-
chuje się mniejszą liczbą parametrów oraz zwiększoną efektywnością oblicze-
niową przy jednoczesnym zachowaniu wysokiej jakości generowanych reprezen-
tacji semantycznych [87].

Metoda ta posiada dwa kluczowe etapy przetwarzania tekstu. W etapie pierw-
szym wstępnie przetworzony tekst poddawany jest tokenizacji. W ramach niej na
początku i na końcu tekstu dodawane są specjalne tokeny ([CLS] oraz [SEP]).
Następnie poszczególne słowa przekształcane są w odpowiadające im identyfika-
tory z wykorzystaniem słownika osadzeń wyuczonych w fazie wstępnego uczenia
modelu.

Tak przygotowany ciąg tokenów przekazywany jest do modelu DistilBERT
odpowiadającego za wygenerowanie jego wektorowej reprezentacji. Reprezentacja
długości wektora ma stałą wartość 768. Warto również wspomnieć, że pomimo
możliwości przetwarzania do 512 tokenów wejściowych autor niniejszej rozprawy
zdecydował się na ograniczenie ich liczby do 256. Rozwiązanie to podyktowane
było potrzebą redukcji zużycia zasobów pamięciowych oraz skrócenia czasu tre-
nowania modeli.

Kolejnym istotnym zagadnieniem jest konieczność zastosowania tokenizera
kompatybilnego z modelem DistilBERT, co wynika z potrzeby zapewnienia spój-
ności między procesem tokenizacji a strukturą modelu.

Proces ekstrakcji cech w tej metodzie realizowany jest z wykorzystaniem
wstępnie wytrenowanego modelu DistilBERT, w dwóch wersjach językowych:

• angielskiej [88] — dla zbiorów danych w języku angielskim;

• polskiej [89] — dla zbiorów danych w języku polskim.

3.1.1.2 Reprezentacja uzyskana metodą TF-IDF

Reprezentacja TF-IDF ma na celu ocenę istotności terminów w kontekście
całego zbioru danych. Wartość wskaźnika składa się z 2 elementów częstotliwości
występowania słowa w tekście (ang. Term Frequency, TF) oraz rzadkości w całym
zbiorze dokumentów (ang. Inverse Document Frequency, IDF).
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Częstotliwość występowania słowa w tekście można wyliczyć ze wzoru 3.4.
Przy czym otrzymany wynik otrzymuje wartości z przedziału [0,1], gdzie 0 ozna-
cza brak wystąpień danego słowa w tekście, a 1 gdy występuje tylko dane słowo.

𝑇𝐹 (𝑥, 𝑦) = liczba wystąpień słowa 𝑥 w tekście 𝑦

całkowita liczba słów w dokumencie 𝑦
(3.4)

Rzadkość występowania słowa w dokumencie polega na ocenie jak niepo-
wtarzalne, jest dane słowo, biorąc pod uwagę cały zbiór zdań w artykule. Wzór na
obliczenie tej wartości został przedstawiony poniżej (wzór 3.5). Wysoka wartość
tego wskaźnika oznacza, że dane słowo jest unikatowe w odniesieniu do całości
artykułu, przez co powinno być istotniejsze pod kątem analizy tekstu.

𝐼𝐷𝐹 (𝑥, 𝑦) = log

(
liczba zdań w artykule 𝑦

liczba zdań zawierających słowo 𝑥 + 1

)
(3.5)

Końcowa wartość współczynnika TF-IDF jest wynikiem mnożenia warto-
ści obu współczynników. Należy przy tym zauważyć, że im częściej dane słowo
będzie pojawiało się w zdaniach, zachowując jednocześnie unikalność w innych
fragmentach tekstu to wartość tego współczynnika, będzie wyższa (osiągane war-
tości są z przedziału [0,1]). Dzięki temu mamy możliwość koncentracji modelu na
tylko istotnych słowach z pominięciem tych mało istotnych.

3.1.2 Mechanizm fuzji wektorów osadzeń (Fusion Encoder)

Zastosowana jako enkoder sieć neuronowa jest architekturą opartą na dwóch
warstwach liniowych, funkcjach aktywacji ReLU (ang. Rectified Linear Activation
Function), a także mechanizmie Droput. Schemat został przedstawiony w części
FusionEncoder na rysunku 3.1

Pierwsza warstwa liniowa przekształca dane wejściowe 𝑥 o wymiarze 1268
(768 wymiar z BERT i 500 z TF-IDF) na przestrzeń o wymiarze 256 określona
wzorem:

ℎ1 = 𝑊1𝑥 + 𝑏1 (3.6)

gdzie:

• 𝑊1 ∈ R256×1268 - macierz wag,
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• 𝑏1 ∈ R256 - wektor przesunięć (bias),

• 𝑥 ∈ R1268 - wektor wejściowy.

Kolejnym elementem jest funkcja aktywacji ReLU, której zadaniem jest wpro-
wadzenie nieliniowości do modelu zastępując wartości ujemnie zerami. Wyrażona
jest ona wzorem:

ℎReLU
1 = max(0, ℎ1) (3.7)

W zaproponowanej sieci funkcja ta występuje dwukrotnie po pierwszej oraz po
drugiej warstwie liniowej gdzie zamiast ℎ1 i ℎReLU

1 jest odpowiednio ℎ2 i ℎReLU
2 .

Kolejnym elementem wykorzystywanym wyłącznie na etapie uczenia sieci
jest mechanizm Dropout, będący techniką regularyzacji polegającą na losowym
wyłączaniu niektórych neuronów. Wartość po funkcji aktywacji ℎReLU

1 jest mno-
żona przez losową maskę r, przyjmującą wartości 0 dla neuronów nieaktywnych i
1 dla neuronów aktywnych. W zaproponowanej metodzie współczynnik Dropout
został ustalony na wartość 0.3.

Następnie zastosowano kolejną warstwę liniową, która przekształca dane z
przestrzeni o wymiarze 256 na przestrzeń o wymiarze 64 określona wzorem:

ℎ2 = 𝑊2ℎ
Dropout
1 + 𝑏2 (3.8)

gdzie:

• 𝑊2 ∈ R64×256 - macierz wag,

• 𝑏2 ∈ R64 - wektor przesunięć (bias).

3.1.3 Funkcja straty wykorzystana w procesie uczenia

Ze względu na częste występowanie problemu niezbalansowania klas w de-
tekcji dezinformacji, w zaproponowanej metodzie (na etapie enkodera) została
wykorzystana funkcja Focal Loss [90]. Funkcja ta pozwala na zwiększenie wagi
próbek klasy mniejszościowej i równocześnie ogranicza wpływ klasy dominują-
cej. Warto podkreślić, że wartości domyślne parametrów 𝛾 oraz 𝛼, występujące
we wzorze, zostały zaproponowane i empirycznie zweryfikowane w tej samej
publikacji [90].

𝐹𝐿 (𝑝𝑡 ) = −𝛼(1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 ) (3.9)

29

29:74139356



Gdzie:

• 𝑝𝑡 =

{
𝑦, jeśli 𝑦 = 1

1 − 𝑦, jeśli 𝑦 = 0

• 𝛾 > 0 — parametr skupienia (domyślnie 𝛾 = 2),

• 𝛼 ∈ (0, 1) — współczynnik ważenia klasy mniejszości (domyślnie 𝛼 =

0.25).

Podsumowując, zaproponowana metoda opiera się na dwuwarstwowej sieci
neuronowej, zaprojektowanej do pracy z heterogenicznymi wektorami cech. Łączy
ona zaawansowaną analizę semantyczną, realizowaną za pomocą modelu Distil-
BERT, z informacją statystyczną o częstości terminów, dostarczaną przez TF-IDF.
Ponadto, dzięki zastosowaniu funkcji straty Focal Loss, model skutecznie radzi so-
bie zarówno z danymi zbalansowanymi, jak i silnie niezbalansowanymi, co zostało
wykazane w dalszej części pracy.
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3.2 Metoda GEM (Graph Embedding Method)

W ramach hybrydowego podejścia do ekstrakcji cech opracowano także me-
todę GEM (Graph Embedding Method). Metoda ta została zaprezentowana na
rysunku 3.2.

Rysunek 3.2: Schemat działania metody GEM

Schemat (rysunek 3.2) prezentuje kompleksowe rozwiązanie hybrydowego
ekstraktora cech składającego się z czterech głównych grafów, a każdy z grafów
jest odpowiedzialny za inną perspektywę analizy tekstu:

• graf spójności odpowiadający za spójność semantyczną tekstu;

• graf wynikania logicznego odpowiadający za logiczne zależności;

• graf przyczynowo-skutkowego odpowiadający za relacje przyczynowo-skutkowe;

• graf wiedzy zewnętrznej odpowiadający za powiązanie z wiedzą zewnętrzną.

Następnie wektory cech z poszczególnych grafów są łączone, tworząc hybry-
dowy wektor wykorzystywany do dalszej analizy.

3.2.1 Graf spójności tekstu

Pierwszy z zaprojektowanych w zaproponowanej metodzie grafów został
przedstawiony na rysunku 3.3
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Rysunek 3.3: Schemat działania grafu spójności tekstu

W zaproponowanym module (grafie) każde zdanie występujące w tekście
zostaje reprezentowane jako węzeł grafu, a krawędzie łączące węzły odzwiercie-
dlają podobieństwo semantyczne między zdaniami. Obliczenia podobieństwa są
dokonywane poprzez wyliczenie wektorów osadzeń przy użyciu modelu Sentence-
Transformer [91]. Z kolei waga krawędzi w grafie odpowiada wartości podobień-
stwa cosinusowego pomiędzy osadzeniami. Dodatkowo w kolejnym etapie doko-
nywana jest analiza centralności zdań z wykorzystaniem algorytmu PageRank.
Ocena ta pozwala na określenie, które fragmenty tekstu są najbardziej reprezenta-
tywne w stosunku do całej treści. Metoda ta zwraca dwie wartości (cechy spójności
oraz centralności).
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3.2.2 Graf wynikania logicznego

Kolejnym modułem zaproponowanej metody jest graf wynikania logicznego.
Graf ten modeluje logiczne zależności między zdaniami, umożliwiając ocenę,
w jakim stopniu jedno zdanie wynika z innego. Schemat działania tego modułu
przedstawiony został na rysunku 3.4

Rysunek 3.4: Schemat działania modułu wynikania logicznego

Każde zdanie jest reprezentowane przez węzeł, a skierowane krawędzie wska-
zują relacje potwierdzające logiczne wnioskowanie pomiędzy zdaniami. W celu
identyfikacji tych relacji wykorzystany został model NLI (ang. Natural Langu-
age Inference). Dodatkowo w zaproponowanej metodzie został wykorzystany me-
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chanizm wag krawędzi, który odpowiada wartości prawdopodobieństwa, z jakim
model przewiduje klasę wynikania dla danej pary węzłów. Metoda ta zwraca in-
formację o średniej sile logicznych powiązań między zdaniami wykorzystywanej
jako jeden z parametrów na późniejszym etapie badań.

3.2.3 Graf przyczynowo-skutkowy

Kolejnym modułem (przedstawionym na rysunku 3.5) jest graf przyczynowo-
skutkowy. Został on opracowany w celu wykrywania zależności przyczynowo-
skutkowych w analizowanym tekście.

Rysunek 3.5: Schemat działania modułu przyczynowo-skutkowego
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Skierowane krawędzie grafu odwzorowują relacje przyczynowo-skutkowe
wykryte w tekście. Analiza grafu pozwala określić liczbę i gęstość relacji przyczynowo-
skutkowych. Gęstość relacji oraz cechy przyczynowości są następnie zwracane jako
parametry wykorzystywane w późniejszym etapie badań.

3.2.4 Graf wiedzy zewnętrznej

Ostatnim modułem w autorskiej metodzie jest graf wiedzy zewnętrznej. Został
on przedstawiony na rysunku 3.6.

Rysunek 3.6: Schemat działania modułu wiedzy zewnętrznej

Graf wiedzy zewnętrznej umożliwia powiązanie analizowanego tekstu z in-

35

35:49617364



formacjami pochodzącymi z zewnętrznych źródeł np. wiadomości pobrane z ka-
nału RSS Google News. Metoda ta dla zdań w artykule (przy pomocy modelu
BERTopic [92] wspierany przez wielojęzyczny model językowy [91]) wykrywa
automatycznie tematy, a następnie wybierany jest temat występujący najczęściej.

W kolejnym kroku dokonywane jest wyszukiwanie i pobieranie artykułów po-
wiązanych tematycznie. Po pobraniu artykułów analizowany artykuł zostaje ozna-
czony jako główny węzeł grafu, natomiast znalezione artykuły stanowią pozostałe
węzły w grafie. Krawędzie w grafie stanowią stopień podobieństwa semantycznego
(obliczony na podstawie porównania wektorów osadzeń Sentence-BERT miarą po-
dobieństwa cosinusowego). Na wyjściu zaproponowanego modułu otrzymujemy
ilościowy wskaźnik stopnia zgodności tekstu z wiedzą zewnętrzną.

W celu uniknięcia ryzyka wycieku danych (ang. data leakage) zadbano o
pełną separację danych między etapem uczenia a testowania. Moduł wiedzy ze-
wnętrznej korzysta wyłącznie z informacji pozyskiwanych po momencie podziału
zbioru danych, a graf wiedzy budowany jest niezależnie dla każdego artykułu z
wykorzystaniem wyłącznie zewnętrznych źródeł (np. wiadomości z kanału RSS).
Oznacza to, że w procesie ewaluacji nie występują żadne połączenia ani zależności
pomiędzy dokumentami ze zbiorów treningowych i testowych.

3.2.5 Integracja i łączenie danych z wielu grafów

Proces integracji wyników analiz przeprowadzonych na podstawie opisanych
wcześniej grafów stanowi ważny etap opracowanej autorskiej metody ekstrakcji
cech. Polega on na syntezie cech wydobytych z czterech niezależnych struktur
grafowych, z których każda odpowiada za odrębny poziom interpretacji warstwy
tekstowej. Proces ten realizowany jest przez operację konkatenacji wektorów cząst-
kowych, co pozwala na zachowanie pełnej informacji strukturalnej pochodzącej z
każdego z grafów, bez ryzyka utraty istotnych składowych.

Formalnie proces tworzenia hybrydowego wektora cech 𝑉𝐻 można zapisać
jako:

𝑉𝐻 = 𝑉𝑠𝑒𝑚 ⊕ 𝑉𝑙𝑜𝑔 ⊕ 𝑉𝑐𝑎𝑢𝑠 ⊕ 𝑉𝑐𝑡 𝑥 (3.10)

gdzie:

• 𝑉𝑠𝑒𝑚 - wektor cech reprezentujący aspekty semantyczne (z grafu spójności),
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• 𝑉𝑙𝑜𝑔 - wektor cech reprezentujący strukturę logiczną (z grafu wynikania
logicznego),

• 𝑉𝑐𝑎𝑢𝑠 - wektor cech reprezentujący relacje przyczynowo-skutkowe (z grafu
przyczynowo-skutkowego),

• 𝑉𝑐𝑡 𝑥 - wektor cech reprezentujący powiązanie z wiedzą zewnętrzną (z grafu
wiedzy zewnętrznej).

Wynikowy wektor (𝑉𝐻) stanowi wielowymiarową, heterogeniczną reprezen-
tację analizowanego tekstu. Takie podejście pozwala na uchwycenie w procesie
detekcji różnorodnych zależności wewnątrz tekstu, zapewniając modelowi kom-
plementarny zestaw danych wejściowych.
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4. Metodyka badań i procedura
eksperymentalna

W niniejszym rozdziale przedstawiono szczegółową metodykę przeprowa-
dzonych badań oraz procedurę eksperymentalną.

4.1 Procedura eksperymentalna

W ramach rozprawy doktorskiej przeprowadzono badania zaproponowanych
metod LFM, GEM oraz metody referencyjnej, pełniącej rolę standardu porów-
nawczego dla oceny skuteczności zaproponowanych metod. Schemat przeprowa-
dzonych badań przedstawiono na rysunku 4.1.

Rysunek 4.1: Schemat procedury przeprowadzonych eksperymentów
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W pierwszym kroku ze zbiorów danych opisanych w podrozdziale 4.2 zostały
pobrane dane tekstowe oraz etykiety. Dane te (w drugim kroku) przeszły proces
wstępnego przetwarzania, który szczegółowo został opisany w podrozdziale 4.3.

W kolejnym etapie przetwarzania zbiór danych został podzielony na zbiory
treningowe i testowe z wykorzystaniem procedury walidacji krzyżowej (ang. cross-
validation), umożliwiającej obiektywną ocenę zdolności generalizacyjnych mo-
delu poprzez wielokrotne uczenie i testowanie na różnych podzbiorach danych.

Następnym etapem przeprowadzonych badań była ekstrakcja cech tekstu, re-
alizowana zarówno metodą referencyjną, jak i z wykorzystaniem zaproponowa-
nych metod LFM oraz GEM. W ramach niniejszej rozprawy, w celu odniesienia
uzyskanych wyników metod hybrydowych (szczegółowo opisanych w rozdziale
3) do wyników metody referencyjnej, wybrano podejście bazujące na modelu
DistilBERT. Metoda ta, opisana w podrozdziale 3.1.1.1, pełniła rolę ekstraktora
cech, natomiast proces klasyfikacji realizowano z użyciem algorytmów takich
jak drzewo decyzyjne, maszyna wektorów nośnych (ang. support vector machine,
svm), perceptron wielowarstwowy (ang. multi-layer perceptron, mlp) i ekstremalne
wzmacnianie gradientowe (ang. extreme gradient boosting, xgboost). Uzyskane
w ten sposób reprezentacje wektorowe tekstów zostały następnie przekazane do
wspomnianych klasyfikatorów w celu dalszej analizy.

Końcowym etapem prac badawczych była ewaluacja uzyskanych modeli przy
użyciu miar jakości opisanych w rozdziale 4.4. Dla każdego ze zbiorów danych
przeprowadzono łącznie dwanaście eksperymentów, z wyjątkiem zbioru pocho-
dzącego z projektu SWAROG, w przypadku którego liczba eksperymentów była
większa ze względu na jego specyficzną strukturę.

Spośród zaproponowanych autorskich metod ekstrakcji cech najbardziej sku-
teczna okazała się metoda GEM (Graph Embedding Method). Uzyskała ona wyniki
o około 14% wyższe niż metoda referencyjna. Wyniki wszystkich przeprowadzo-
nych eksperymentów zostały szczegółowo zaprezentowane w rozdziale 5.

4.2 Zbiory danych

W ramach rozprawy doktorskiej wykorzystano pięć zbiorów danych do klasy-
fikacji dezinformacji, z czego dwa zbiory obejmowały dane w języku angielskim, a
trzy w języku polskim. Dodatkowo, ze względu na uczestnictwo autora w projekcie
SWAROG (System Wykrywania Dezinformacji Metodami Sztucznej Inteligencji
w ramach programu Infostrateg) wykorzystano zbiór opracowany w ramach tego
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projektu.

4.2.1 Zbiory anglojęzyczne

4.2.1.1 Word Embedding over Linguistic Features for Fake News Detection (WELFake)

Pierwszy zbiór danych wykorzystany w ramach rozprawy doktorskiej - Word
Embedding over Linguistic Features for Fake News Detection (WELFake) [93]
stanowi korpus tekstowy w języku angielskim. Obejmuje 72 134 artykuły sklasy-
fikowane binarnie i został opracowany poprzez integrację informacji pochodzących
z różnych źródeł.

W zbiorze tym każdy z artykułów został opatrzony odpowiednią etykietą (ang.
label) jednoznacznie wskazującą jego charakter. Wartość 1 przypisano artykułom
prawdziwym (ang. real news), natomiast 0 przypisano artykułom zawierającym
treści dezinformacyjne, mijające się z prawdą (ang. fake news).

Rysunek 4.2: Rozkład liczności etykiet w zbiorze danych WELFake

Rozkład klas w zbiorze danych został przedstawiony na wykresie 4.2. Jak
można zauważyć, 35 028 artykułów zostało oznaczonych jako artykuły zawierające
prawdziwe informacje oraz 37 106 jako artykuły zawierające fałszywe informacje.
Jak można zauważyć, zbiór ten posiada względnie zrównoważony rozkład klas, a
jego szczegółowa struktura zbioru danych została zaprezentowana w tabeli 4.1.
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Tabela 4.1: Struktura i format zbioru danych WELFake

id Pole zawierające indywidualny identyfikator artykułu. Numeracja za-
czyna się od 0.

title Jest to kolumna zawierająca tytuł artykułu. Średnia długość tekstu w tej
kolumnie wynosi 76 znaków, a średnia ilość słów wynosi 12. Dodat-
kowo ta kolumna zawiera 558 pustych wierszy.

text Jest to kolumna zawierająca treść artykułu. Średnia długość tekstu w
tej kolumnie wynosi 3 268 znaków, a średnia ilość słów wynosi 540.
Dodatkowo ta kolumna zawiera 39 pustych wierszy.

label Jest to kolumna zawierająca etykietę binarną artykułu - 0 dla wartości
fałszywych i 1 dla prawdziwych. kolumna ta nie zawiera pustych wier-
szy.

4.2.1.2 ISOT Fake News detection dataset

Kolejny wykorzystany w rozprawie doktorskiej zbiór danych - ISOT Fake
News detection dataset [94] stanowi binarny korpus tekstów w języku angiel-
skim. Zbiór ten zawiera łącznie 44 919 artykułów, a jego szczegółowy rozkład
przedstawiono na wykresie 4.3.

Rysunek 4.3: Rozkład liczności etykiet w zbiorze danych ISOT
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Tabela 4.2: Struktura i format zbioru danych ISOT

title Jest to kolumna zawierająca tytuł artykułu. Średnia długość tekstu w
tej kolumnie wynosi 80 znaków, a średnia ilość słów wynosi 12.

text Jest to kolumna zawierająca treść artykułu. Średnia długość tekstu w
tej kolumnie wynosi 2 469 znaków, a średnia ilość słów wynosi 405.

subject Jest to kolumna zawierająca tematykę artykułu. Artykuły zostały po-
dzielone na 8 kategorii - politics news, world news, news, politics,
left-news, government news, us news, middle-east.

date Jest to kolumna zawierająca dane o czasie publikacji artykułu. Dane
prawdziwe były zbierane w przedziale od 13 stycznia 2016 do 31
grudnia 2017, a dane fałszywe od 31 marca 2015 do 19 lutego 2018.

Jak można zauważyć zbiór ten podobnie jak wcześniejszy opisany w roz-
dziale 4.2.1.1 posiada względnie zrównoważony rozkład klas, gdzie 21 417 arty-
kułów zostało oznaczonych jako prawdziwe informacje oraz 23 502 jako artykuły
zawierające fałszywe informacje. Szczegółowa struktura zbioru danych została
zaprezentowana w tabeli 4.2. W zaprezentowanej strukturze nie występuje pole
etykiety (ang. label), gdyż treści fałszywe i prawdziwe znajdowały się w dwóch
oddzielnych plikach. Natomiast autor pracy zdecydował się na dodanie takiego
pola, w celu utworzenia spójnego zbioru danych do dalszych analiz.

4.2.2 Polskie zbiory binarne

4.2.2.1 OpenFact

Zbiór OpenFact [95] jest binarnym polskim zbiorem danych tekstowych utwo-
rzonym przez Uniwersytet Ekonomiczny w Poznaniu w ramach programu Infostra-
teg Narodowego Centrum Badań i Rozwoju. Zbiór ten zawiera 38 068 artykułów (a
po usunięciu duplikatów 36 770) i posiada dwie kolumny url oraz label. Pierwsza
z nich wskazuje na adresy stron internetowych, skąd pobrane były informacje, z
kolei druga kolumna zawiera etykiety tak, lub nie, w zależności od tego, czy ar-
tykuł jest prawdziwy, czy też stanowi dezinformację. Warto również wspomnieć,
że zbiór ten jest najbardziej niezbalansowanym zbiorem wykorzystywanym w ni-
niejszej rozprawie. Liczy on 32 405 artykułów oznaczonych jako „Nie” i tylko 3
472 artykuły z etykietą „Tak".
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4.2.2.2 Infotester

Zbiór danych Infotester [96] stanowi polskojęzyczny korpus opracowany w
ramach programu INFOSTRATEG, realizowanego przy wsparciu Narodowego
Centrum Badań i Rozwoju. Celem projektu było stworzenie narzędzi wspierają-
cych wykrywanie dezinformacji oraz ocenę wiarygodności treści publikowanych
w internecie.

Rysunek 4.4: Rozkład liczności etykiet w zbiorze danych Infotester

Zbiór obejmuje 15 608 artykułów tekstowych, które zostały poddane ręcznej
ocenie przez wykwalifikowanych annotatorów. Dane mają charakter binarny, co
oznacza, że każdemu artykułowi przypisano etykietę wskazującą na jego prawdzi-
wość lub fałszywość. Warto jednak zaznaczyć, że w zbiorze występują 4 etykiety,
ale dwie z nich oznaczone jako trudno stwierdzić (ang. hard to say) - 105 próbek
i mylna informacja (ang.misinformation) - 38 próbek zostały usunięte ze zbioru.
Struktura udostępnionych danych jest szczegółowa i zawiera m.in. następujące
pola: unikalny identyfikator rekordu, identyfikator artykułu, kategoria tematyczna,
adres URL źródłowej publikacji, oceny dwóch niezależnych recenzentów wraz z
czasem ich dokonania, link umożliwiający pobranie treści artykułu, a także ocenę
końcową wraz z czasem jej nadania.

4.2.3 Polski zbiór wieloetykietowy

Zbiór SWAROG [97] jest wieloetykietowym polskim zbiorem danych teksto-
wych. W odróżnieniu od poprzednich zbiorów danych nie zawiera jednoznacznej
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etykiety, a odpowiedzi na 13 pytań. Pytania były podzielone na 3 grupy: weryfika-
cyjne, manipulacyjne i metafizyczne.

Pierwsza grupa pytań dotyczyła czynników weryfikacyjnych, obejmowała
pytania, które wymagały dodatkowej aktywności ze strony annotatora w formie
weryfikacji treści przedstawionych w artykule w innych źródłach. Pytania z tej
grupy:

• Czy istnieje co najmniej jedno wiarygodne źródło, które potwierdza wszyst-
kie informacje zawarte w treści? (Q1)

• Czy większość podanych informacji jest potwierdzona przez wiarygodne
źródła? (Q2)

• Czy żadna z informacji nie jest potwierdzona przez wiarygodne źródła?
(Q3)

• Czy stwierdzenie odnosi się do aktualnych danych? (Q4)

Druga grupa pytań dotyczyła czynników manipulacyjnych, miała na celu
zbadanie, czy autor opublikowanej treści celowo narzucił czytelnikowi określony
punkt widzenia lub wprowadził odbiorcę w błąd. Pytania z tej grupy:

• Czy do właściwego zrozumienia treści wymagane są dodatkowe informacje?
(Q5)

• Czy treść zawiera nieścisłości? (Q6)

• Czy stwierdzenie zawiera fragmenty wyrwane z kontekstu? (Q7)

• Czy autor stwierdzenia stosuje wybiórcze przedstawianie faktów? (Q8)

• Czy autor stwierdzenia próbuje wprowadzić czytelnika w błąd? (Q9)

Ostatnią grupę pytań stanowią czynniki metafizyczne. Celem ich stosowa-
nia jest wykrycie czy w badanym tekście oddziaływano na emocje czytelnika,
uwzględniając jego poglądy. Pytania z tej grupy:

• Czy treść ma charakter satyryczny? (Q10)

• Czy autor przyznaje, że przedstawione fakty są zmyślone? (Q11)
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• Czy stwierdzenie zawiera obietnice polityczne? (Q12)

• Czy stwierdzenie zawiera treści religijne? (Q13)

Rysunek 4.5: Rozkład etykiet w zbiorze danych SWAROG

Na wykresie 4.5 przedstawiony został rozkład klas dla poszczególnych pytań
opisanych powyżej. Jak można zauważyć, zbiór ten charakteryzuje się znaczną
nierównowagą klas. W kategorii pytań dotyczących czynników weryfikacyjnych
większość odpowiedzi została oznaczona jako negatywna, a w pozostałych dwóch
grupach klasę większościową stanowią odpowiedzi twierdzące.

4.3 Wstępne przetwarzanie danych

Proces oczyszczania danych stanowił przygotowanie wstępne dla wszystkich
metod ekstrakcji cech opisanych w rozprawie. Etap ten był podzielony na dwie
części. Pierwsza z nich odpowiadała za eliminację pustych rekordów. Dodatkowo
w drugim wariancie tego etapu zdecydowano się usunąć znaczniki HTML, a w
przypadku stosowania metody statystycznej TF-IDF dodatkowo znaki specjalne,
nawiasy oraz liczby tak, aby pozostały jedynie słowa, oraz interpunkcja w postaci
przecinków i kropek. Działania te miały na celu przygotowanie tekstu do dalszej
analizy.
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Kolejny krok polegał na usunięciu słów przystankowych (ang. stop words),
gdyż ich występowanie nie wpływa na zrozumienie tekstu, a jednocześnie ogra-
nicza koncentrację na słowach mających większe znaczenie i będących bardziej
istotnymi dla zrozumienia sensu artykułu. Co istotne na tym etapie dokonano rów-
nież zamiany wartości true i false na wartości 0 i 1, wykorzystując label encoding.

4.4 Ocena skuteczności klasyfikacji

Ocena skuteczności klasyfikacji jest jednym z istotnych zagadnień w kon-
tekście określenia działania modelu. Macierz pomyłek (ang. confusion matrix)
jest jednym z podstawowych narzędzi do oceny jakości klasyfikatorów. Macierz
ta umożliwia szczegółową analizę wyników modelu, poprzez zestawienie przewi-
dywanych etykiet z rzeczywistymi etykietami przypisanymi do danych testowych.
Dla problemu klasyfikacji binarnej ma ona postać macierzy o wymiarze 2x2, gdzie
wyróżniamy cztery kategorie:

• True Positive (𝑇𝑃) jest to liczba przypadków poprawnie zaklasyfikowanych
pozytywnie;

• True Negative (𝑇𝑁) jest to liczba przypadków poprawnie zaklasyfikowanych
jako negatywne;

• False Positive (𝐹𝑃) jest to liczba przypadków błędnie zaklasyfikowanych
jako pozytywne;

• False Negative (𝐹𝑁) jest to liczba przypadków błędnie zaklasyfikowanych
jako negatywne.
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Na podstawie wartości z macierzy pomyłek wyznacza się różne miary sku-
teczności klasyfikatora takie jak dokładność, precyzja, czułość czy miara 𝐹1. Na
etapie walidacji krzyżowej w pracy wykorzystano kilka z nich.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1)

Precyzja (ang. Precision) mierzy, jaki odsetek przypadków zaklasyfikowa-
nych jako pozytywne jest rzeczywiście pozytywny. Innymi słowy, z wszystkich
przypadków, które model uznał za pozytywne, precyzja wskazuje, ile z nich fak-
tycznie było poprawnie zaklasyfikowanych. Jest to ważna miara, gdy chcemy zmi-
nimalizować błąd pierwszego rodzaju.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2)

Czułość (ang. Recall) mierzy, jaki odsetek rzeczywiście pozytywnych przy-
padków został poprawnie zaklasyfikowany przez model. Określa, jak dobrze model
wychwytuje prawdziwe pozytywne przypadki. Jest to istotna metryka, gdy zależy
nam na tym, by nie przeoczyć żadnych pozytywnych przypadków, czyli zminima-
lizować błąd drugiego rodzaju.

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4.3)

Metryka 𝐹1 mierzy harmoniczną średnią między precyzją a czułością, łącząc
obie te miary w jedną wartość. Określa, jak dobrze model balansuje między wykry-
waniem prawdziwych pozytywnych przypadków (czułość) a minimalizowaniem
liczby błędnych alarmów (precyzja). Jest to istotna metryka, gdy chcemy uzyskać
równowagę między tym, jak dobrze model wykrywa pozytywne przypadki, a tym,
jak rzadko popełnia błędy w postaci fałszywych alarmów.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4.4)

Dokładność (ang. Accuracy) to odsetek wszystkich poprawnie zaklasyfikowa-
nych przypadków (zarówno pozytywnych, jak i negatywnych) względem wszyst-
kich przypadków w zbiorze danych.

47

47:75428201



Balanced Accuracy =
1

2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

)
(4.5)

Zbalansowana dokładność (ang. Balanced Accuracy) jest definiowana jako
średnia arytmetyczna czułości oraz specyficzności (ang. specificity). Miara ta znaj-
duje zastosowanie w analizie zbiorów o niezbalansowanym rozkładzie klas, gdyż
w przeciwieństwie do standardowej dokładności (Accuracy), niweluje wpływ do-
minacji klasy liczniejszej na wynik końcowy.
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5. Wyniki przeprowadzonych badań

W niniejszym rozdziale przedstawiono wyniki badań dotyczących oceny za-
proponowanych przez autora hybrydowych metod ekstrakcji cech. Eksperymenty
skupiają się na trzech komplementarnych obszarach:

• porównanie proponowanych metod względem metod referencyjnych (sekcja
5.1, 5.2, 5.3);

• porównanie proponowanych rozwiązań względem innych metod opisanych
w literaturze (sekcja 5.4);

• ocena wpływu komponentów proponowanych metod na otrzymywane wy-
niki (sekcja 5.5).

Przy porównaniu względem metod referencyjnych (obszar pierwszy) zasto-
sowano cztery wybrane modele klasyfikacyjne uczenia maszynowego (XGBo-
ost, SVM, MLP oraz drzewa decyzyjne). Wyniki uzyskane przez modele zostały
ocenione przy użyciu różnych metryk, takich jak dokładność (ang. accuracy),
zbalansowana dokładność (ang. balanced accuracy), miara 𝐹1-score, precyzja
(ang. precision) oraz czułość (ang. recall). Ponadto dla zapewnienia przejrzysto-
ści prezentacji, eksperymenty podzielono na trzy grupy odpowiadające różnym
typom zbiorów danych oraz zadaniom klasyfikacyjnym. W każdej grupie doko-
nano porównania trzech podejść: metody bazowej oraz dwóch autorskich metod
hybrydowych. Eksperymenty zostały zorganizowane w następujący sposób:

• Zbiory angielskie binarne – proces detekcji binarnej przeprowadzony na
danych w języku angielskim, stanowiący punkt odniesienia dla dalszych
analiz.

• Zbiory polskie binarne – analogiczne eksperymenty wykonane na danych
w języku polskim, pozwalające ocenić skuteczność metod w zadaniach
dwuklasowych w warunkach języka o mniejszych zasobach niż w przypadku
języka angielskiego.

• Zbiór polski wieloetykietowy – scenariusz bardziej złożony, w którym dane
opatrzone są wieloma etykietami. W celu zachowania spójności analizy, dla
każdej etykiety zdefiniowano osobny problem detekcji binarnej.
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Przy porównaniu proponowanych rozwiązań z metodami opisanymi w lite-
raturze (obszar drugi), skupiono się na ocenie ich konkurencyjności względem
podejść opartych na dużych modelach językowych (np. GPT-4).

W obszarze trzecim przeprowadzono analizę ablacyjną (ang. ablation study),
mającą na celu ocenę wpływu poszczególnych komponentów modelu na końcową
skuteczność detekcji dezinformacji.

5.1 Binarne zbiory anglojęzyczne

W poniższym podrozdziale zostały przedstawione i szerzej omówione wyniki
uzyskane w trakcie przeprowadzonych badań dla zaproponowanych rozwiązań.

5.1.1 Word Embedding over Linguistic Features for Fake News Detection (WE-
LFake)

Jednym ze zbiorów wykorzystanych w niniejszej rozprawie jest zbiór WE-
LFake. Zbiór ten, jak wspomniano we wcześniejszej części pracy, jest wyraźnie
zbalansowany. Rezultaty uzyskane dla metody referencyjnej zostały przedstawione
w Tabeli 5.1. Jedną z metryk jest dokładność (ang. accuracy). Miara ta przedstawia
stosunek poprawnie sklasyfikowanych przykładów do ogólnej liczby przykładów.
W tej metryce najwyższe rezultaty otrzymał model MLP z wynikiem 85.25%.
Dla metody referencyjnej znacząco od wyników odbiega metoda wykorzystująca
drzewa decyzyjne, która z wynikiem tylko 72.04% wykazuje najgorszą efektyw-
ność spośród zaproponowanych klasyfikatorów.

Tabela 5.1: Tabela z wynikami eksperymentów metody referencyjnej na zbiorze
WELFake

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8139 0.8086 0.7204 0.8525
Balanced Accuracy 0.8072 0.8160 0.7133 0.8517
𝐹1 (0) 0.8158 0.8235 0.7148 0.8532
𝐹1 (1) 0.8371 0.8149 0.7195 0.8589
Precision (0) 0.8375 0.8205 0.7453 0.8608
Precision (1) 0.8210 0.8325 0.7020 0.8353
Recall (0) 0.8104 0.8140 0.6965 0.8282
Recall (1) 0.8333 0.8240 0.7557 0.8497
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Kolejną miarą przedstawioną w Tabeli 5.1 jest zbalansowana dokładność (ang.
balanced accuracy), która jest szczególnie istotną miarą w przypadku nierówno-
miernie rozłożonych klas (co w przypadku tego zbioru danych nie było kluczowe
ze względu na dobre zbalansowanie zbioru). W metryce tej podobnie jak w do-
kładności najlepsze rezultaty otrzymał model MLP, a najgorsze wyniki uzyskano
dla modelu wykorzystującego drzewa decyzyjne.

Miara 𝐹1 umożliwia ocenę modelu dla poszczególnych klas. Dla klasy 0
(oznaczonej jako wiadomości fałszywe) model MLP uzyskał wynik 85.32%, a
dla klasy 1 (oznaczonej jako wiadomości prawdziwe) osiągnął 85.89%. Model
drzew decyzyjnych osiągnął gorsze wyniki, szczególnie dla klasy 1, gdzie miara
ta wyniosła jedynie 71.95%.

Tabela 5.2: Tabela z wynikami eksperymentów metody LFM na zbiorze WELFake

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9137 0.9381 0.8254 0.9304
Balanced Accuracy 0.9379 0.9247 0.9302 0.9302
𝐹1 (0) 0.9101 0.9359 0.8165 0.9280
𝐹1 (1) 0.9170 0.9401 0.8335 0.9326
Precision (0) 0.9210 0.9414 0.8343 0.9333
Precision (1) 0.9071 0.9351 0.8177 0.9279
Recall (0) 0.8995 0.9305 0.7994 0.9228
Recall (1) 0.9271 0.9453 0.8499 0.9375

Analizując wyniki uzyskane przez pierwszą z zaproponowanych metod hy-
brydowych (LFM) przedstawione w Tabeli 5.2 można zauważyć, że dla miary
dokładności najwyższe rezultaty otrzymał model SVM z wynikiem 93.81%. Dla
metody tej znacząco odbiega metoda bazująca na drzewach decyzyjnych, która
z wynikiem 82.54% wykazuje najgorszą efektywność spośród zaproponowanych
klasyfikatorów. Kolejną miarą przedstawioną w Tabeli 5.2 jest zbalansowana do-
kładność. W metryce tej podobnie jak w dokładności, najwyższe rezultaty otrzymał
model SVM, a najniższe model wykorzystujący drzewa decyzyjne.

Miara 𝐹1 pozwala uzyskać ocenę modelu dla poszczególnych klas. Dla klasy
0 (oznaczonej jako wiadomości fałszywe) model SVM uzyskał wynik 93.59%,
a dla klasy 1 (oznaczonej jako wiadomości prawdziwe) osiągnął 94.01%, Model
drzew decyzyjnych osiągnął gorsze wyniki, szczególnie dla klasy 0, gdzie miara
ta wyniosła jedynie 81.65%.

Analizując wyniki uzyskane przez drugą z zaproponowanych metod hybry-
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Tabela 5.3: Tabela z wynikami eksperymentów dla metody GEM na zbiorze WE-
LFake

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9189 0.9387 0.7869 0.9454
Balanced Accuracy 0.9187 0.9386 0.7861 0.9453
𝐹1 (0) 0.9162 0.9368 0.7749 0.9436
𝐹1 (1) 0.9215 0.9404 0.7978 0.9472
Precision (0) 0.9208 0.9375 0.7962 0.9486
Precision (1) 0.9173 0.9399 0.7791 0.9426
Recall (0) 0.9116 0.9363 0.7547 0.9386
Recall (1) 0.9259 0.9410 0.8175 0.9519

dowych (GEM) przedstawione w Tabeli 5.3 można zauważyć, że dla mary dokład-
ności najwyższe rezultaty otrzymał model MLP z wynikiem 94.54%. Dla metody
tej gorszymi wynikami charakteryzuje się metoda wykorzystująca drzewa decy-
zyjne, która z wynikiem tylko 78.69% wykazuje najgorszą efektywność spośród
zaproponowanych klasyfikatorów. Kolejną miarą przedstawioną w Tabeli 5.3 jest
zbalansowana dokładność. W metryce tej podobnie jak w dokładności, najlepsze
rezultaty otrzymał model MLP, a najgorsze drzewa decyzyjne.

Miara 𝐹1 pozwala uzyskać ocenę modelu dla poszczególnych klas. Dla klasy
0 (oznaczonej jako wiadomości fałszywe) model MLP uzyskał wynik 94.36%,
a dla klasy 1 (oznaczonej jako wiadomości prawdziwe) osiągnął 94.72%. Model
drzew decyzyjnych osiągnął znacznie gorsze wyniki, szczególnie dla klasy 0, gdzie
miara ta wyniosła jedynie 77.49%.

Dodatkowo przeprowadzone zostały testy istotności statystycznej na podsta-
wie wartości zbalansowanej dokładności uzyskanej w 10-krotnej walidacji krzyżo-
wej i klasyfikatora XGBoost. Test Friedmana wykazał istotne statystycznie różnice
pomiędzy analizowanymi metodami (𝜒2 = 18.73, p = 0.0001). W celu identyfikacji
par metod różniących się istotnie zastosowano testy post-hoc Wilcoxona z korekcją
Holma-Bonferroniego. Analiza wykazała istotne statystycznie różnice pomiędzy
wszystkimi parami metod (p < 0,05). Najwyższą średnią wartość zbalansowanej
dokładności uzyskała metoda LFM (0.9379 ± 0.0241), która okazała się istotnie
lepsza od metody GEM (0.9187 ± 0.0076) oraz metody referencyjnej (0,8072 ±
0.0369). Dodatkowo, na podstawie rang Friedmana, metoda LFM uzyskała naj-
niższą (najlepszą) średnią rangę równą 1.18, metoda GEM rangę 1.82, natomiast
metoda referencyjna rangę 3.00.
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Na podstawie uzyskanych wyników można stwierdzić, że zastosowanie metod
hybrydowych w przypadku tego zbioru danych przyniosło rzeczywistą oraz istotną
statystycznie poprawę wyników detekcji dezinformacji.

5.1.2 ISOT Fake News detection dataset

Kolejnym anglojęzycznym zbiorem binarnym wykorzystanym w niniejszej
pracy jest zbiór ISOT (ISOT Fake News detection dataset). Zbiór ten, zgod-
nie z wcześniejszymi opisami, jest zbiorem zbalansowanym, podobnie jak zbiór
WELFake. Wyniki eksperymentów uzyskane przez metodę referencyjną zostały
przedstawione w Tabeli 5.4.

Tabela 5.4: Tabela z wynikami eksperymentów dla metody referencyjnej na zbio-
rze ISOT

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8455 0.8448 0.7826 0.8452
Balanced Accuracy 0.8501 0.8497 0.7803 0.8608
𝐹1 (0) 0.8391 0.8347 0.7795 0.8455
𝐹1 (1) 0.8491 0.8440 0.7670 0.8526
Precision (0) 0.8482 0.8441 0.7570 0.8556
Precision (1) 0.8257 0.8286 0.7819 0.8456
Recall (0) 0.8384 0.8351 0.8098 0.8566
Recall (1) 0.8449 0.8442 0.7332 0.8451

Jak można zauważyć dla miary dokładności najwyższe rezultaty otrzymał
model XGBoost z wynikiem 84.55% oraz model MLP, którego dokładność wy-
nosiła 84.52%. Dla metody referencyjnej najgorsze wyniki uzyskano dla klasy-
fikatora drzew decyzyjnych, który przy dokładności 78,26% wykazuje najniższą
efektywność spośród analizowanych metod. W metryce zbalansowanej dokład-
ności podobnie, jak w metryce dokładności, najlepsze rezultaty otrzymał model
MLP, a najgorsze bazujący na drzewach decyzyjnych.

Wyniki uzyskane przy użyciu miary 𝐹1 wskazują następujące wartości dla
poszczególnych klas. Dla klasy 0 model MLP uzyskał wynik 84.55%, a dla klasy 1
osiągnął 85.26%, co wskazuje na jego skuteczność w klasyfikacji obu klas. Model
drzew decyzyjnych osiągnął gorsze wyniki, szczególnie dla klasy 1, gdzie miara
ta wyniosła 76.70%.

Analiza wyników metody LFM (Tabela 5.5) wskazuje, że najwyższą dokład-
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Tabela 5.5: Tabela z wynikami eksperymentów dla metody LFM na zbiorze ISOT

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9505 0.9461 0.8736 0.9582
Balanced Accuracy 0.9505 0.9464 0.8725 0.9581
𝐹1 (0) 0.9527 0.9481 0.8810 0.9601
𝐹1 (1) 0.9482 0.9440 0.8651 0.9562
Precision (0) 0.9533 0.9562 0.8675 0.9593
Precision (1) 0.9475 0.9355 0.8808 0.9573
Recall (0) 0.9520 0.9400 0.8950 0.9610
Recall (1) 0.9489 0.9528 0.8501 0.9552

ność (93.82%) uzyskał model MLP. Dla metody tej od wyników odbiega metoda
wykorzystująca drzewa decyzyjne, która z wynikiem 87.36% wykazuje najgorszą
efektywność spośród zaproponowanych klasyfikatorów. Kolejną miarą przedsta-
wioną w Tabeli jest zbalansowana dokładność. W metryce tej podobnie jak w do-
kładności najlepszymi rezultatami charakteryzuje się model MLP, a najgorszymi
drzewa decyzyjne.

Analiza wyników miary 𝐹1 pokazuje, że model MLP osiągnął 96.01% dla
klasy 0 oraz 95.62% dla klasy 1. Model drzew decyzyjnych uzyskał gorsze wyniki,
w szczególności dla klasy 1, gdzie miara 𝐹1 wyniosła 86.51%.

Tabela 5.6: Tabela z wynikami eksperymentów metody GEM na zbiorze ISOT

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9418 0.9531 0.8175 0.9561
Balanced Accuracy 0.9417 0.9532 0.8161 0.9559
𝐹1 (0) 0.9444 0.9550 0.8291 0.9582
𝐹1 (1) 0.9390 0.9511 0.8042 0.9539
Precision (0) 0.9445 0.9588 0.8124 0.9557
Precision (1) 0.9389 0.9470 0.8236 0.9566
Recall (0) 0.9443 0.9513 0.8465 0.9606
Recall (1) 0.9391 0.9551 0.7857 0.9512

Analizując wyniki uzyskane przez drugą z zaproponowanych metod GEM
przedstawione w Tabeli 5.6 można zauważyć, że dla mary dokładności najwyższe
rezultaty otrzymał model MLP z wynikiem 95.61% oraz SVM 95.31%. W przy-
padku tej metody znacząco od pozostałych wyników odbiega klasyfikator wyko-
rzystujący drzewa decyzyjne, który przy dokładności 81,75% charakteryzuje się
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najniższą efektywnością spośród zaproponowanych modeli. Kolejną miarą przed-
stawioną w Tabeli 5.6 jest zbalansowana dokładność. W metryce tej podobnie jak
w dokładności najlepsze rezultaty otrzymał model MLP oraz SVM, a najgorsze
wykorzystujący drzewa decyzyjne.

Dla klasy 0 w mierze 𝐹1 model MLP uzyskał wynik 95.82%, a dla klasy
1 (oznaczonej jako wiadomości prawdziwe) osiągnął 95.39%, co wskazuje na
wysoką skuteczność w klasyfikacji obu klas. Model Drzew decyzyjnych osiągnął
znacznie gorsze wyniki, szczególnie dla klasy 1, gdzie miara ta wyniosła 80.42%.

Test Friedmana wykazał istotne statystycznie różnice pomiędzy analizowa-
nymi metodami (𝜒2 = 17.64, p = 0.0001). W celu identyfikacji par metod róż-
niących się istotnie zastosowano testy post-hoc Wilcoxona z korekcją Holma-
Bonferroniego. Analiza wykazała istotne statystycznie różnice pomiędzy wszyst-
kimi parami metod (p < 0.05). Najwyższą średnią wartość zbalansowanej dokład-
ności uzyskała metoda LFM (0.9505± 0.0206), która okazała się istotnie lepsza od
metody GEM (0.9417 ± 0.01) oraz metody referencyjnej (0.8501 ± 0.0387). Do-
datkowo, na podstawie rang Friedmana, metoda LFM uzyskała najniższą średnią
rangę równą 1.2727, metoda GEM rangę 1.7273, natomiast metoda referencyjna
rangę 3.00.

Na podstawie uzyskanych wyników można stwierdzić, że zastosowanie metod
hybrydowych w przypadku tego zbioru danych przyniosło rzeczywistą poprawę
wyników detekcji dezinformacji. Dodatkowo porównując wyniki uzyskane na obu
zbiorach, można zauważyć, że połączenie metod takich jak MLP oraz SVM z
hybrydowymi metodami ekstrakcji cech pozwala uzyskać wysoką skuteczność
poprawnej detekcji dezinformacji w tekście.

5.2 Polskie binarne zbiory danych

W poniższym podrozdziale zostały szerzej omówione wyniki uzyskane pod-
czas badań zaproponowanych metod ekstrakcji cech na polskich binarnych zbio-
rach danych.

5.2.1 Infotester

Pierwszym polskim zbiorem danych wykorzystanym w niniejszej rozprawie
jest zbiór Infotester. Zbiór ten jest zbiorem niezbalansowanym.
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W Tabeli 5.7 zostały przedstawione wyniki uzyskane przez metodę referen-
cyjną. Analiza wyników dla wszystkich modeli przedstawionych w Tabeli 5.7
obrazuje ich istotne różnice w skuteczności, zwłaszcza w kontekście klasyfikacji
danych o niezbalansowanym rozkładzie klas. Podstawowa miara ogólnej popraw-
ności klasyfikacji, którą jest dokładność (ang. Accuracy) dla przedstawionych kla-
syfikatorów wynosi odpowiednio 86.22%, 85.46%, 82.30% oraz 86.26%. Pomimo
relatywnie wysokich wartości, miara ta nie pozwala w pełni ocenić skuteczności
modeli.

Tabela 5.7: Tabela z wynikami eksperymentów dla metody referencyjnej na zbio-
rze Infotester

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8622 0.8546 0.8230 0.8626
Balanced Accuracy 0.7672 0.6693 0.7379 0.7964
𝐹1 (0) 0.8872 0.8771 0.8738 0.8865
𝐹1 (1) 0.6741 0.5485 0.5715 0.6830
Precision (0) 0.8855 0.8645 0.8767 0.8895
Precision (1) 0.6948 0.7148 0.5585 0.6736
Recall (0) 0.8942 0.9029 0.8690 0.8850
Recall (1) 0.6501 0.4415 0.6052 0.6829

Analizując znacznie bardziej miarodajną metrykę, którą jest zbalansowana
dokładność można zauważyć, że najwyższy wynik uzyskał model MLP, a naj-
niższy model SVM. Biorąc pod uwagę powyższe zauważalna jest tendencja do
faworyzowania klasy większościowej przez model SVM. Wskaźnikiem potwier-
dzającym tę hipotezę jest wartość miary 𝐹1, która w przypadku klasy oznaczonej
jako 1 dla modelu SVM osiąga wartość na poziomie 54.85% przy 87.71% dla
klasy oznaczonej jako 0. Ponadto wartość tej metryki potwierdza wynik uzyskany
w zbalansowanej dokładności gdzie ponownie najlepsze rezultaty uzyskał model
MLP.

Wyniki przedstawione w Tabeli 5.8 wskazują na najwyższą skuteczność mo-
delu XGBoost, który osiągnął 86.24% dokładności oraz 84.69% zbalansowanej
dokładności. MLP również uzyskał wysokie wyniki, zwłaszcza w klasyfikacji
klasy pozytywnej, gdzie osiągnął najlepszy wynik miary 𝐹1 (88.64%), precyzji
(89.17%) i czułości (88.02%).

W kontekście miary 𝐹1, zarówno dla klasy 0, jak i 1, MLP i XGBoost wyróż-
niały się wysoką skutecznością, zwłaszcza w rozpoznawaniu klasy pozytywnej,
gdzie oba modele osiągnęły wyniki powyżej 87%. Dla metody SVM uzyskano
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Tabela 5.8: Tabela z wynikami eksperymentów dla metody LFM na zbiorze Info-
tester

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8624 0.8231 0.7639 0.8614
Balanced Accuracy 0.8469 0.7990 0.7298 0.8491
𝐹1 (0) 0.8080 0.7433 0.6477 0.8101
𝐹1 (1) 0.8788 0.8521 0.8100 0.8864
Precision (0) 0.8015 0.7352 0.6444 0.8017
Precision (1) 0.8862 0.8560 0.8170 0.8917
Recall (0) 0.8133 0.7517 0.6489 0.8168
Recall (1) 0.8807 0.8528 0.8116 0.8802

wyniki na poziomie 82% dla klasy 0 i 85% dla klasy 1.

W Tabeli 5.9 zostały przedstawione wyniki z przeprowadzonego eksperymen-
tów dla metody GEM. Analizując uzyskane wyniki, można zauważyć, że druga
(GEM) z zaproponowanych metod osiąga lepsze wyniki od metody LFM.

Tabela 5.9: Tabela z wynikami eksperymentów dla metody GEM na zbiorze Info-
tester

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9509 0.9248 0.8202 0.9491
Balanced Accuracy 0.9360 0.9115 0.7805 0.9444
𝐹1 (0) 0.8986 0.8646 0.6855 0.9057
𝐹1 (1) 0.9729 0.9506 0.8765 0.9681
Precision (0) 0.8978 0.8510 0.6877 0.8807
Precision (1) 0.9734 0.9574 0.8754 0.9807
Recall (0) 0.8995 0.8790 0.6834 0.9328
Recall (1) 0.9725 0.9440 0.8777 0.9560

Porównując wartości miary dokładności, można zauważyć, że modele XGBo-
ost, SVM oraz MLP osiągneły bardzo wysokie wyniki przekraczające 92%. Wska-
zuje to na ich skuteczność w klasyfikacji dezinformacji. Zbalansowana dokładność,
będąca średnią z czułości dla każdej klasy, dostarcza dodatkowych informacji przy
analizie niezbalansowanych zbiorów danych. Również w tym przypadku wymie-
nione trzy modele wykazały wysokie wartości (powyżej 91%), natomiast model
drzew decyzyjnych osiągnął znacznie niższy wynik (78.05%).
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Przeprowadzony test Friedmana potwierdził istnienie statystycznie istotnych
różnic między analizowanymi rozwiązaniami (𝜒2 = 22.00, 𝑝 = 0.00002). Szcze-
gółowa analiza post-hoc z wykorzystaniem testu Wilcoxona (z korekcją Holma-
Bonferroniego) wykazała, że różnice te występują dla wszystkich par metod
(𝑝 < 0.05). Najwyższą średnią zbalansowaną dokładność odnotowano dla me-
tody GEM (0.9360 ± 0.0124), która uzyskała również najniższą średnią rangę
Friedmana (1.00), wyprzedzając metodę LFM (2.00) oraz metodę referencyjną
(3.00)

5.2.2 OpenFact

Kolejnym zbiorem danych wykorzystanym w niniejszej rozprawie jest zbiór
OpenFact. Zbiór ten, jak opisano we wcześniejszej części pracy, jest zbiorem
niezbalansowanym.

Tabela 5.10: Tabela z wynikami eksperymentów dla metody referencyjnej na zbio-
rze OpenFact

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8544 0.8498 0.8180 0.8562
Balanced Accuracy 0.7965 0.7659 0.7359 0.8174
𝐹1 (0) 0.8656 0.8632 0.8449 0.8666
𝐹1 (1) 0.7637 0.7361 0.6164 0.7761
Precision (0) 0.8595 0.8515 0.8471 0.8653
Precision (1) 0.8112 0.8340 0.6043 0.7864
Recall (0) 0.8719 0.8751 0.8427 0.8679
Recall (1) 0.7211 0.6567 0.6290 0.7669

Analizując wyniki detekcji dezinformacji uzyskane przez metodę referen-
cyjną (Tabela 5.10) można zauważyć wyraźne zróżnicowanie skuteczności, zwłasz-
cza w kontekście rozpoznawania klasy mniejszościowej. Najwyższe wartości me-
tryk ogólnych osiągnął model MLP, uzyskując dokładność na poziomie 85.62%
oraz zbalansowaną dokładność na poziomie 81.74%, co wskazuje na jego naj-
większą efektywność zarówno pod względem ogólnej trafności klasyfikacji, jak
i zrównoważonego rozpoznawania obu klas. Model XGBoost również osiągnął
wysokie wyniki zwłaszcza w zakresie dokładności (85.44%) oraz 𝐹1 dla klasy 0
(86.56%), zachowując jednocześnie relatywnie dobre zrównoważenie klasyfika-
cji. Należy jednak zauważyć, że model ten uzyskał niższe wyniki dla klasyfikacji
klasy mniejszościowej. Najsłabsze wyniki podobnie jak we wcześniejszych eks-
perymentach uzyskał model wykorzystujący algorytm drzew decyzyjnych.
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Tabela 5.11: Tabela z wynikami eksperymentów dla metody LFM na zbiorze Open-
Fact

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.8744 0.8698 0.8380 0.8762
Balanced Accuracy 0.8165 0.7859 0.7559 0.8374
𝐹1 (0) 0.8856 0.8832 0.8649 0.8866
𝐹1 (1) 0.7837 0.7561 0.6364 0.7961
Precision (0) 0.8795 0.8715 0.8671 0.8853
Precision (1) 0.8312 0.8540 0.6243 0.8064
Recall (0) 0.8919 0.8951 0.8627 0.8879
Recall (1) 0.7411 0.6767 0.6490 0.7869

W Tabeli 5.11 zostały przedstawione wyniki eksperymentów przeprowadzone
dla zaproponowanej metody hybrydowej LFM. Jak można zauważyć najwyższe
rezultaty uzyskuje model MLP. Jego dokładność wynosi 87.62%, a zbalansowana
dokładność 83.74%, co potwierdza jego efektywność względem ogólnej skutecz-
ności klasyfikacji oraz rozpoznawania obu klas. Najniższe wyniki uzyskał model
drzew decyzyjnych, osiągając dokładność na poziomie 83.8%. Szczególnie niska
była skuteczność w klasyfikacji klasy mniejszościowej, gdzie miara 𝐹1 wyniosła
63.64%.

Tabela 5.12: Tabela z wynikami eksperymentów dla metody GEM na zbiorze Open-
Fact

Metryka XGBOOST SVM DECISION TREE MLP

Accuracy 0.9444 0.9398 0.9080 0.9462
Balanced Accuracy 0.8865 0.8559 0.8259 0.9074
𝐹1 (0) 0.9556 0.9532 0.9349 0.9566
𝐹1 (1) 0.8537 0.8261 0.7064 0.8661
Precision (0) 0.9495 0.9415 0.9371 0.9553
Precision (1) 0.9012 0.9240 0.6943 0.8764
Recall (0) 0.9619 0.9651 0.9327 0.9579
Recall (1) 0.8111 0.7467 0.7190 0.8569

W Tabeli 5.12 zostały przedstawione wyniki eksperymentów metody hybry-
dowej GEM. Jak można zauważyć najwyższe rezultaty uzyskuje model MLP. Jego
dokładność wynosi 94.62%, a zbalansowana dokładność 90.74%. Co potwierdza
jego efektywność względem ogólnej skuteczności klasyfikacji oraz rozpoznawa-
nia obu klas. Równie wysokie wyniki osiągnął model XGBoost. Jego rezultaty
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były niewiele gorsze od modelu MLP. Najniższe wyniki osiągnął model drzew
decyzyjnych, osiągając 90.8% dokładności, jednak co istotne najgorzej radzi sobie
z rozpoznawaniem klasy mniejszościowej osiągając jedyne 73.64% miary 𝐹1.

Przeprowadzony test Friedmana potwierdził istnienie statystycznie istotnych
różnic między analizowanymi rozwiązaniami (𝜒2 = 22.00, 𝑝 = 0.00002). Szcze-
gółowa analiza post-hoc z wykorzystaniem testu Wilcoxona (z korekcją Holma-
Bonferroniego) wykazała, że różnice te występują dla wszystkich par metod
(𝑝 < 0.05). Najwyższą średnią zbalansowaną dokładność odnotowano dla me-
tody GEM (0.8865 ± 0.0132), która uzyskała również najniższą średnią rangę
Friedmana (1.00), wyprzedzając metodę LFM (2.00) oraz metodę referencyjną
(3.00).

5.3 Polski zbiór wieloetykietowy

Podczas analizy wyników klasyfikacji poszczególnych grup pytań (weryfika-
cyjnych, manipulacyjnych oraz metafizycznych), zaobserwowano wyraźne różnice
w skuteczności poszczególnych modeli. W każdej z grup można wyróżnić zarówno
najlepsze, jak i najsłabsze podejścia modelowe, co odzwierciedlono poniżej.

5.3.1 Wyniki dla metody referencyjnej

W tabeli 5.13 przedstawione zostały wyniki metody referencyjnej dla pytania
"Czy istnieje co najmniej jedno wiarygodne źródło, które potwierdza wszystkie in-
formacje zawarte w treści?". Zauważalna jest w otrzymanych wynikach tendencja,
gdzie model MLP osiąga najwyższą skuteczność metryki dokładności (70.01%).
Sugeruje to zdolność modelu do poprawnego klasyfikowania większości próbek.
Pozostałe modele wykazują dokładność niższą, ale porównywalną z modelem
MLP.
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Tabela 5.13: Wyniki metody referencyjnej – pytanie Q1

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6878 0.6752 0.6763 0.7001
Balanced Accuracy 0.6602 0.5864 0.6532 0.6639
𝐹1 (0) 0.7762 0.8276 0.7589 0.7982
𝐹1 (1) 0.5405 0.0865 0.5461 0.5143
Precision (0) 0.7409 0.6752 0.7366 0.7419
Precision (1) 0.5843 0.1531 0.5718 0.6003
Recall (0) 0.8159 0.9564 0.7831 0.8680
Recall (1) 0.5045 0.0865 0.5233 0.4598

Analiza metryki zbalansowanej dokładności, która dokładniej odzwierciedla
wydajność modeli na niezbalansowanym zbiorze danych niż wcześniej omówiona
miara, wskazuje, że model MLP osiągnął wartość 66.39%, nieznacznie przewyż-
szając wynik uzyskany przez XGBoost. Najniższe wyniki odnotowano dla modelu
SVM, który osiągnął 58.64%, co wskazuje na niższą wydajność w klasyfikacji
klasy mniejszościowej.

W Tabeli 5.14 przedstawione zostały wyniki dla pytania, "Czy większość
podanych informacji jest potwierdzona przez wiarygodne źródła?". Podobnie jak w
przypadku poprzedniego pytania najwyższe wyniki uzyskał model MLP (69.86%)
oraz model SVM (68.95%) w metryce dokładności. Należy jednak wspomnieć, że
uzyskane różnice pomiędzy wszystkimi modelami są niewielkie.

Tabela 5.14: Wyniki metody referencyjnej – pytanie Q2

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6847 0.6895 0.6744 0.6886
Balanced Accuracy 0.6631 0.6117 0.6563 0.6651
𝐹1 (0) 0.7655 0.8432 0.7498 0.7719
𝐹1 (1) 0.5580 0.1190 0.5618 0.5531
Precision (0) 0.7333 0.6892 0.7289 0.7344
Precision (1) 0.5972 0.8346 0.5856 0.6019
Recall (0) 0.8013 0.9804 0.7723 0.8153
Recall (1) 0.5250 0.1147 0.5404 0.5149

W aspekcie metryki zbalansowanej dokładności podobnie jak w przypadku
wcześniejszego pytania najwyższą wartość uzyskał model MLP (66.51%) oraz mo-
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del XGBoost (66.31%), co potwierdza zdolność obydwu modeli do równomiernej
analizy klas. Model SVM wykazuje natomiast najniższy wynik w tej metryce, co
potwierdza jego tendencję do faworyzowania klasy większościowej.

Tabela 5.15: Wyniki metody referencyjnej – pytanie Q3

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7740 0.8000 0.7118 0.7648
Balanced Accuracy 0.6375 0.5888 0.6407 0.5908
𝐹1 (0) 0.3600 0.0888 0.4509 0.2282
𝐹1 (1) 0.8985 0.9200 0.8279 0.8877
Precision (0) 0.4363 0.0888 0.4321 0.4053
Precision (1) 0.8449 0.8000 0.8477 0.7985
Recall (0) 0.3142 0.0888 0.4722 0.1789
Recall (1) 0.9607 0.9588 0.8091 0.9543

Tabela 5.15 prezentuje wyniki dla pytania "Czy żadna z informacji nie jest
potwierdzona przez wiarygodne źródła?", które wykazują odmienne charaktery-
styki. Najwyższą dokładność uzyskał model SVM (80%), a tuż za nim model
XGBoost. Warto jednak zwrócić uwagę na wartość metryki zbalansowanej do-
kładności, gdzie model drzew decyzyjnych ma najwyższą wartość 64.07% oraz
model XGBoost, który uzyskał wynik na poziomie 63.75%.

Tabela 5.16: Wyniki metody referencyjnej – pytanie Q4

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7333 0.7539 0.7101 0.7533
Balanced Accuracy 0.6542 0.5971 0.6505 0.6536
𝐹1 (0) 0.8500 0.8900 0.8196 0.8751
𝐹1 (1) 0.4501 0.0971 0.4809 0.3966
Precision (0) 0.8012 0.7539 0.8001 0.8000
Precision (1) 0.5186 0.0971 0.5037 0.5354
Recall (0) 0.9064 0.9671 0.8403 0.9685
Recall (1) 0.4021 0.0971 0.4607 0.3355

W tabeli 5.16 zostały przedstawione wyniki dla pytania "Czy stwierdzenie
odnosi się do aktualnych danych?". Pod względem miary dokładności modele
SVM (75.39%) i MLP (75.33%) osiąją najwyższe, bardzo zbliżone wartości. Jed-
nakże, analiza metryki zbalansowanej dokładności wykazuje, że modele XGBoost
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(65.42%) i drzewo decyzyjne (65.05%) ponownie wykazują przewagę nad SVM
(59.71%).

Tabela 5.17: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q5

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7265 0.7605 0.6792 0.7526
Balanced Accuracy 0.6461 0.6031 0.6436 0.6453
𝐹1 (0) 0.4369 0.1031 0.5084 0.3669
𝐹1 (1) 0.8455 0.8964 0.7764 0.8786
Precision (0) 0.5030 0.1031 0.4886 0.5163
Precision (1) 0.7969 0.7605 0.7973 0.7957
Recall (0) 0.3906 0.1031 0.5304 0.3045
Recall (1) 0.9016 0.9731 0.7568 0.9755

W tabeli 5.17 przedstawione zostały wyniki dla pytania "Czy do właściwego
zrozumienia treści wymagane są dodatkowe informacje?". Najwyższą dokładność
dla tego pytania odnotowuje model SVM. Pozostałe modele uzyskują niższe war-
tości tej metryki. Analizując jednak metrykę zbalansowanej dokładności, stwier-
dzono, że najwyższe rezultaty osiągają modele XGBoost i MLP, podczas gdy
podobnie jak we wcześniejszych pytaniach model SVM odnotowuje najniższy
rezultat, co potwierdza jego właściwość faworyzowania klasy większościowej.

Tabela 5.18: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q6

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7413 0.7601 0.6930 0.7402
Balanced Accuracy 0.6431 0.5856 0.6480 0.6124
𝐹1 (0) 0.4095 0.0856 0.4969 0.3069
𝐹1 (1) 0.8638 0.8912 0.7964 0.8679
Precision (0) 0.4824 0.0856 0.4772 0.4608
Precision (1) 0.8118 0.7601 0.8170 0.7823
Recall (0) 0.3617 0.0856 0.5190 0.2465
Recall (1) 0.9245 0.9556 0.7770 0.9673

Kolejnym pytaniem w zbiorze danych było pytanie "Czy treść zawiera nieści-
słości?", gdzie uzyskane wyniki zostały przedstawione w Tabeli 5.18. Ponownie
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najlepszy rezultat jeżeli chodzi o dokładność uzyskał model SVM (76.01%). Jed-
nakże analiza wyników w metryce zbalansowanej dokładności ponownie wska-
zuje, że model ten ma problemy z faworyzowaniem klasy dominującej, a najlepsze
rezultaty w tej metryce osiąga model drzew decyzyjnych oraz XGBoost.

Analiza metryki 𝐹1 pokazuje podobnie jak w przypadku wcześniejszego
pytania wzorce, gdzie dla klasy mniejszościowej najsłabsze wartości ma model
SVM, jednocześnie notujący najwyższe wyniki dla klasy dominującej.

W Tabeli 5.19 przedstawiono wyniki dla pytania "Czy stwierdzenie zawiera
fragmenty wyrwane z kontekstu?". Model SVM (80.15%) ponownie osiąga naj-
wyższą dokładność, a za nim plasuje się XGBoost (78.33%). Jednakże, zbalanso-
wana dokładność pokazuje, że dla modeli drzew decyzyjnych i XGBoost uzyskany
wynik jest zdecydowanie wyższy niż dla MLP i SVM. To ponownie sugeruje, że
wysoka dokładność SVM i MLP może wynikać z faworyzowania jednej z klas.

Tabela 5.19: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q7

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7833 0.8015 0.7230 0.7597
Balanced Accuracy 0.6522 0.5907 0.6545 0.5967
𝐹1 (0) 0.3904 0.0907 0.4697 0.2607
𝐹1 (1) 0.9035 0.9216 0.8358 0.8813
Precision (0) 0.4700 0.0907 0.4500 0.4203
Precision (1) 0.8519 0.8015 0.8557 0.8008
Recall (0) 0.3411 0.0907 0.4921 0.2099
Recall (1) 0.9632 0.9607 0.8169 0.9466

Analizując metrykę 𝐹1, obserwujemy bardzo niskie wartości klasy mniejszo-
ściowej dla wszystkich modeli, z SVM osiągającym najniższą wartość. Z drugiej
strony, wartości dla klasy dominującej są bardzo wysokie dla wszystkich klasyfi-
katorów, z SVM na czele.

Tabela 5.20 prezentuje wyniki dla pytania "Czy autor stwierdzenia stosuje
wybiórcze przedstawianie faktów?". Model SVM ponownie wyróżnia się najwyż-
szą dokładnością (80.54%), z MLP (76.44%) i XGBoost (75.94%) tuż za nim. Pod
względem zbalansowanej dokładności, drzewo decyzyjne i XGBoost wykazują
bardzo zbliżone i najwyższe wartości.
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Tabela 5.20: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q8

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7594 0.8054 0.6995 0.7644
Balanced Accuracy 0.6385 0.6088 0.6394 0.5942
𝐹1 (0) 0.3775 0.1088 0.4645 0.2032
𝐹1 (1) 0.8841 0.9299 0.8118 0.8905
Precision (0) 0.4523 0.1088 0.4450 0.4167
Precision (1) 0.8310 0.8054 0.8326 0.7889
Recall (0) 0.3310 0.1088 0.4865 0.1611
Recall (1) 0.9460 0.9788 0.7922 0.9607

Tabela 5.21 przedstawia wyniki dla pytania "Czy autor stwierdzenia próbuje
wprowadzić czytelnika w błąd?", które wydają się być najbardziej skrajnym przy-
padkiem niezbalansowania klas spośród analizowanych pytań. SVM osiąga wyjąt-
kowo wysoką dokładność (95.09%), a za nim plasuje się MLP (94%) i XGBoost
(89.23%). Jednakże, zbalansowana dokładność dla wszystkich modeli jest znacz-
nie niższa i bardzo zbliżona, wahając się od 61.96% do 63.54%. Ta dysproporcja
jest kluczowa i pokazuje kolejny raz, że metoda referencyjna nie jest w stanie
poradzić sobie z ekstrakcją cech mogącą zniwelować dużą dysproporcję między
klasami.

Tabela 5.21: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q9

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8923 0.9509 0.8310 0.9400
Balanced Accuracy 0.6226 0.6199 0.6354 0.6196
𝐹1 (0) 0.2451 0.1199 0.3218 0.1499
𝐹1 (1) 0.9875 0.9899 0.9465 0.9882
Precision (0) 0.3020 0.1199 0.3065 0.3053
Precision (1) 0.9502 0.9509 0.9629 0.9496
Recall (0) 0.2151 0.1199 0.3400 0.1356
Recall (1) 0.9877 0.9899 0.9308 0.9882

Tabela 5.22 przedstawia wyniki dla pytania "Czy treść ma charakter saty-
ryczny?". Obserwujemy tu bardzo wysokie wartości dokładności dla wszystkich
modeli, z SVM osiągającym imponujące 98.86%, a za nim XGBoost (97.30%) i
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MLP (96.76%). Jest to mocny sygnał, że większość próbek jest poprawnie klasy-
fikowana.

Tabela 5.22: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q10

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9730 0.9886 0.9105 0.9676
Balanced Accuracy 0.6142 0.6186 0.6083 0.6003
𝐹1 (0) 0.1911 0.1186 0.2193 0.1300
𝐹1 (1) 0.9766 0.9886 0.9686 0.9676
Precision (0) 0.2255 0.1186 0.2063 0.2195
Precision (1) 0.9766 0.9886 0.9686 0.9676
Recall (0) 0.1721 0.1186 0.2360 0.1164
Recall (1) 0.9766 0.9886 0.9686 0.9676

Jednakże analiza zbalansowanej dokładności ujawnia znacznie niższe warto-
ści, wahające się od 60.03% (MLP) do 61.86% (SVM). Taka rozbieżność między
dokładnością a zbalansowaną dokładnością sugeruje, że wysoka dokładność wy-
nika głównie z doskonałego przewidywania klasy dominującej, a modele mają
trudności z klasą mniejszościową.

Tabela 5.23 prezentuje wyniki dla pytania "Czy autor przyznaje, że przed-
stawione fakty są zmyślone?". Ponownie widzimy bardzo wysoką dokładność dla
XGBoost (98.36%), SVM (95.25%) i MLP (95.43%).

Podobnie jak we wcześniejszym pytaniu, zbalansowana dokładność jest znacz-
nie niższa, oscylując wokół 58%-61%. XGBoost (61.20%) osiąga najwyższą war-
tość w tej metryce, co sugeruje nieco lepszą równowagę w klasyfikacji obu klas,
choć nadal z widocznymi ograniczeniami.
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Tabela 5.23: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q11

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9836 0.9525 0.9269 0.9543
Balanced Accuracy 0.6120 0.5825 0.5944 0.5846
𝐹1 (0) 0.1679 0.0825 0.1853 0.0911
𝐹1 (1) 0.9836 0.9525 0.9621 0.9543
Precision (0) 0.1883 0.0825 0.1750 0.1617
Precision (1) 0.9836 0.9525 0.9621 0.9543
Recall (0) 0.1563 0.0825 0.1987 0.0879
Recall (1) 0.9836 0.9525 0.9621 0.9543

Tabela 5.24 przedstawia wyniki dla pytania "Czy stwierdzenie zawiera obiet-
nice polityczne?". Tutaj SVM (94.89%) i MLP (92.31%) ponownie wykazują
najwyższą dokładność, z XGBoost (91.65%) plasującym się niewiele niżej.

W przypadku zbalansowanej dokładności, drzewo decyzyjne (64.62%) i
XGBoost (64.31%) osiągają najlepsze wyniki, sugerując lepszą równowagę w
klasyfikacji. MLP osiąga 63.81%, podczas gdy SVM 59.13% i jest najsłabszy w
tej metryce.

Tabela 5.24: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q12

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9165 0.9489 0.8528 0.9231
Balanced Accuracy 0.6431 0.5913 0.6462 0.6381
𝐹1 (0) 0.3033 0.0913 0.3328 0.2828
𝐹1 (1) 0.9659 0.9613 0.9495 0.9640
Precision (0) 0.3755 0.0913 0.3125 0.3973
Precision (1) 0.9652 0.9489 0.9603 0.9615
Recall (0) 0.2608 0.0913 0.3573 0.2397
Recall (1) 0.9659 0.9613 0.9351 0.9640

Tabela 5.25 prezentuje wyniki dla pytania "Czy stwierdzenie zawiera treści
religijne? ". Modele SVM i MLP osiągają kolejno 98.68% i 98.03% , a XGBoost
97.89%.
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Jednakże, zbalansowana dokładność dla wszystkich modeli oscyluje w zakre-
sie 60%-62%. Model XGBoost (62.63%) osiąga najwyższą wartość, ale różnice
są minimalne.

Tabela 5.25: Tabela z wynikami eksperymentów metody referencyjnej - pytanie
Q13

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9789 0.9868 0.9413 0.9803
Balanced Accuracy 0.6263 0.6168 0.6029 0.6106
𝐹1 (0) 0.2013 0.1168 0.1946 0.1269
𝐹1 (1) 0.9789 0.9868 0.9525 0.9803
Precision (0) 0.2358 0.1168 0.1832 0.1752
Precision (1) 0.9789 0.9868 0.9525 0.9803
Recall (0) 0.1816 0.1168 0.2091 0.1199
Recall (1) 0.9789 0.9868 0.9525 0.9803

5.3.2 Wyniki dla metody LFM

W niniejszym podrozdziale przedstawiono i omówiono wyniki uzyskane dla
eksperymentów z zaproponowaną hybrydową metodą ekstrakcji cech LFM.

Wyniki dla pytania Q1 ("Czy istnieje co najmniej jedno wiarygodne źródło,
które potwierdza wszystkie informacje zawarte w treści?") są przedstawione w
Tabeli 5.26. Modele osiągają dokładność w zakresie od 71.33% (XGBoost) do
72.57% (SVM). Zbalansowana dokładność pozostaje na podobnym poziomie dla
wszystkich modeli, oscylując w granicach 71.79–72.62%. Jest to znacząca poprawa
w stosunku do metody referencyjnej, co sugeruje, że metoda LFM skutecznie
redukuje problem niezbalansowania klas.
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Tabela 5.26: Wyniki metody LFM – pytanie Q1

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7133 0.7257 0.7158 0.7232
Balanced Accuracy 0.7219 0.7262 0.7179 0.7182
𝐹1 (0) 0.7342 0.7649 0.7517 0.7736
𝐹1 (1) 0.6903 0.6784 0.6735 0.6580
Precision (0) 0.8125 0.8136 0.8062 0.8043
Precision (1) 0.6297 0.6365 0.6278 0.6307
Recall (0) 0.6734 0.7234 0.7061 0.7466
Recall (1) 0.7704 0.7290 0.7298 0.6898

Tabela 5.27: Wyniki metody LFM – pytanie Q2

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7141 0.7217 0.7180 0.7206
Balanced Accuracy 0.7216 0.7232 0.7166 0.7151
𝐹1 (0) 0.7300 0.7539 0.7576 0.7694
𝐹1 (1) 0.6969 0.6844 0.6705 0.6582
Precision (0) 0.8020 0.8009 0.7935 0.7910
Precision (1) 0.6402 0.6440 0.6385 0.6385
Recall (0) 0.6733 0.7137 0.7257 0.7499
Recall (1) 0.7700 0.7328 0.7076 0.6803

Dla pytania Q2 ("Czy większość podanych informacji jest potwierdzona przez
wiarygodne źródła?"), wyniki w Tabeli 5.27 są bardzo podobne. Dokładność mie-
ści się w zakresie 71.41% (XGBoost) do 72.17% (SVM), a zbalansowana do-
kładność wynosi od 71.51% dla MLP do 72.32% dla SVM. Wartości metryki
𝐹1 dla klasy 0 (od 73.00% dla XGBoost do 76.94% dla MLP) i dla klasy 1 (od
65.82% dla MLP do 69.69% dla XGBoost) ponownie wskazują na zbalansowaną
wydajność klasyfikatorów, potwierdzając skuteczność LFM w radzeniu sobie z
niezbalansowaniem danych.

Wyniki dla pytania Q3 ("Czy żadna z informacji nie jest potwierdzona przez
wiarygodne źródła?") przedstawiono w Tabeli 5.28. W tym przypadku, dokładność
jest niższa niż dla wcześniejszych dwóch pytań, w zakresie 63,.10% (MLP) do
65.45% (SVM). Jednakże, zbalansowana dokładność pozostaje wysoka i stabilna
dla wszystkich modeli. Jest to istotne, ponieważ odpowiedzi na to pytanie były
niezbalansowane.

69

69:82650923



Tabela 5.28: Wyniki metody LFM – pytanie Q3

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6324 0.6545 0.6418 0.6310
Balanced Accuracy 0.7040 0.7039 0.7045 0.7025
𝐹1 (0) 0.6045 0.5948 0.6012 0.6031
𝐹1 (1) 0.6578 0.7033 0.6771 0.6559
Precision (0) 0.4874 0.4881 0.4881 0.4865
Precision (1) 0.9184 0.9159 0.9178 0.9165
Recall (0) 0.8734 0.8207 0.8530 0.8716
Recall (1) 0.5346 0.5871 0.5560 0.5334

Tabela 5.29: Wyniki metody LFM – pytanie Q4

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6858 0.7129 0.7045 0.7072
Balanced Accuracy 0.7226 0.7291 0.7232 0.7236
𝐹1 (0) 0.7098 0.7629 0.7516 0.7565
𝐹1 (1) 0.6593 0.6494 0.6460 0.6441
Precision (0) 0.8842 0.8851 0.8800 0.8801
Precision (1) 0.5574 0.5659 0.5605 0.5612
Recall (0) 0.6054 0.6773 0.6636 0.6713
Recall (1) 0.8397 0.7809 0.7829 0.7759

Dla pytania Q4 („Czy stwierdzenie odnosi się do aktualnych danych?”) wy-
niki przedstawione w Tabeli 5.29 wskazują, że dokładność modeli mieści się w
przedziale od 68.58% (XGBoost) do 71.29% (SVM). Zbalansowana dokładność
pozostaje zbliżona dla wszystkich modeli, wynosząc od 72.26% (XGBoost) do
72.91% (SVM), co świadczy o efektywności metody LFM w tworzeniu zbalanso-
wanego zestawu cech.
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Tabela 5.30: Tabela z wynikami eksperymentów metody LFM pytanie Q5

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6602 0.6749 0.6619 0.6871
Balanced Accuracy 0.6984 0.6981 0.6970 0.6955
𝐹1 (0) 0.6389 0.6263 0.6353 0.6101
𝐹1 (1) 0.6799 0.7157 0.6859 0.7456
Precision (0) 0.5387 0.5390 0.5378 0.5373
Precision (1) 0.8573 0.8558 0.8554 0.8526
Recall (0) 0.8198 0.7718 0.8087 0.7221
Recall (1) 0.5770 0.6243 0.5853 0.6689

Wyniki dla pytania „Czy do właściwego zrozumienia treści wymagane są do-
datkowe informacje?” przedstawiono w tabeli 5.30. Dokładność modeli mieści się
w przedziale od 66.02% (XGBoost) do 68.71% (MLP). Zbalansowana dokładność
pozostaje dla nich zbliżona, wynosząc od 69.55% (MLP) do 69.84% (XGBoost),
co wskazuje na istotne ograniczenie problemu niezbalansowania danych obserwo-
wanego w metodzie referencyjnej.

Tabela 5.31: Tabela z wynikami eksperymentów metody LFM pytanie Q6

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6589 0.6696 0.6584 0.6642
Balanced Accuracy 0.7098 0.7062 0.7031 0.7052
𝐹1 (0) 0.6393 0.6272 0.6299 0.6290
𝐹1 (1) 0.6771 0.7060 0.6841 0.6943
Precision (0) 0.5291 0.5274 0.5247 0.5264
Precision (1) 0.8886 0.8823 0.8798 0.8820
Recall (0) 0.8555 0.8111 0.8313 0.8227
Recall (1) 0.5640 0.6013 0.5750 0.5877

Dla pytania "Czy treść zawiera nieścisłości?", wyniki w Tabeli 5.31 wykazują
Dokładność w zakresie 65.84% do 66.96%. Zbalansowana dokładność wynosi od
70.31% do 70.98%, co ponownie wskazuje na sukces metody LFM w tworzeniu
zbalansowanego środowiska klasyfikacyjnego. Wartości wskaźnika 𝐹1 dla klasy
0 (od 62.72% dla SVM do 63.93% dla XGBoost) i dla klasy 1 (od 67.71% dla
XGBoost do 70.60% dla SVM) są bardzo zbliżone, co potwierdza skuteczne
radzenie sobie z niezbalansowaniem klas.

71

71:76808240



Tabela 5.32: Tabela z wynikami eksperymentów metody LFM pytanie Q7

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6331 0.6504 0.6479 0.6457
Balanced Accuracy 0.7070 0.6999 0.7087 0.7034
𝐹1 (0) 0.6084 0.5921 0.6043 0.5987
𝐹1 (1) 0.6557 0.6983 0.6854 0.6857
Precision (0) 0.4897 0.4859 0.4913 0.4880
Precision (1) 0.9218 0.9112 0.9218 0.9159
Recall (0) 0.8825 0.8172 0.8529 0.8404
Recall (1) 0.5316 0.5825 0.5644 0.5665

Wyniki dla pytania Q7 („Czy stwierdzenie zawiera fragmenty wyrwane z kon-
tekstu?”) przedstawiono w Tabeli 5.32. Modele osiągnęły dokładność od 63.31%
(XGBoost) do 65.04% (SVM). Zbalansowana dokładność waha się od 69.99% dla
SVM do 70.87% dla drzewa decyzyjnego. Jest to szczególnie warte podkreślenia,
ponieważ w metodzie referencyjnej wyniki dla tych pytań wskazywały na silne
niezbalansowanie.

Tabela 5.33: Tabela z wynikami eksperymentów metody LFM pytanie Q8

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.6335 0.6523 0.6407 0.6475
Balanced Accuracy 0.6959 0.6951 0.6962 0.6959
𝐹1 (0) 0.6102 0.5994 0.6070 0.6030
𝐹1 (1) 0.6549 0.6965 0.6706 0.6856
Precision (0) 0.4973 0.4971 0.4976 0.4975
Precision (1) 0.8937 0.8919 0.8937 0.8931
Recall (0) 0.8546 0.8040 0.8373 0.8190
Recall (1) 0.5372 0.5862 0.5550 0.5728

Dla pytania Q8 ("Czy autor stwierdzenia stosuje wybiórcze przedstawianie
faktów?"), wyniki w tabeli 5.33 pokazują dokładność w zakresie 63.35% (XGBo-
ost) do 65.23% (SVM). Zbalansowana dokładność jest spójna dla wszystkich
modeli (od 69.51% dla SVM do 69.62% dla drzewa decyzyjnego).
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Tabela 5.34: Tabela z wynikami eksperymentów metody LFM pytanie Q9

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.4770 0.4915 0.5462 0.4890
Balanced Accuracy 0.6662 0.6493 0.6865 0.6782
𝐹1 (0) 0.4413 0.4212 0.4570 0.4539
𝐹1 (1) 0.5093 0.5492 0.6158 0.5207
Precision (0) 0.3307 0.3137 0.3516 0.3436
Precision (1) 0.9692 0.9518 0.9900 0.9826
Recall (0) 0.9521 0.8878 0.8984 0.9641
Recall (1) 0.3804 0.4109 0.4746 0.3924

Wyniki dla pytania Q9 ("Czy autor stwierdzenia próbuje wprowadzić czytel-
nika w błąd?") przedstawiono w Tabeli 5.34. W przeciwieństwie do poprzednich
pytań, tutaj dokładność jest zauważalnie niższa, oscylując od 47.70% do 54.62%.
Pomimo tego, zbalansowana dokładność utrzymuje się w przedziale od 64.93%
(SVM) do 68.65% (drzewo decyzyjne). Co ważne uzyskane wyniki w metryce
𝐹1 są znacznie bardziej zbliżone niż w metodzie referencyjnej, co wskazuje na
poprawę w radzeniu sobie z klasą mniejszościową, nawet jeśli ogólna dokładność
jest niższa.

Tabela 5.35: Tabela z wynikami eksperymentów metody LFM pytanie Q10

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.4136 0.4715 0.4468 0.3989
Balanced Accuracy 0.6677 0.6888 0.6577 0.6574
𝐹1 (0) 0.3342 0.3492 0.3184 0.3214
𝐹1 (1) 0.4791 0.5623 0.5406 0.4630
Precision (0) 0.2591 0.2738 0.2434 0.2456
Precision (1) 0.9743 0.9871 0.9569 0.9600
Recall (0) 0.9726 0.9565 0.9174 0.9600
Recall (1) 0.3547 0.4212 0.3979 0.3390

Dla pytania Q10 ("Czy treść ma charakter satyryczny?"), wyniki w Tabeli
5.35 pokazują niższą niż we wcześniejszych pytaniach dokładność (od 39.89%
dla MLP do 47.15% dla SVM). Jednakże zbalansowana dokładność wynosi od
65.74% dla MLP do 68.88% dla SVM, co świadczy o lepszej zdolności metody
LFM do klasyfikacji obu klas, mimo wyzwań związanych z ogólną dokładnością.
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Dla pytania Q11 ("Czy autor przyznaje, że przedstawione fakty są zmy-
ślone?"), wyniki w Tabeli 5.36 są podobne do Q9 i Q10, z niską dokładnością (od
36.18% dla MLP do 42.07% dla drzewa decyzyjnego). Zbalansowana dokładność
pozostaje w zakresie (od 64.90% dla MLP do 66.63% dla XGBoost).

Tabela 5.36: Tabela z wynikami eksperymentów metody LFM pytanie Q11

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.3839 0.4176 0.4207 0.3618
Balanced Accuracy 0.6663 0.6572 0.6505 0.6490
𝐹1 (0) 0.3136 0.3022 0.2984 0.2954
𝐹1 (1) 0.4434 0.5053 0.5121 0.4185
Precision (0) 0.2480 0.2372 0.2342 0.2296
Precision (1) 0.9786 0.9674 0.9653 0.9600
Recall (0) 0.9786 0.9423 0.9239 0.9600
Recall (1) 0.3302 0.3721 0.3770 0.3073

Wyniki dla pytania Q12 ("Czy stwierdzenie zawiera obietnice polityczne?")
są przedstawione w Tabeli 5.37. Dokładność jest stosunkowo niska (od 43.94% do
48.01%). Jednakże, zbalansowana dokładność mieści się w zakresie od 66.19%
dla XGBoost do 68.23% dla MLP. Wyniki metryki 𝐹1 dla klasy 0 (od 39.48% dla
XGBoost do 41.82% dla MLP) i dla klasy 1 (od 47.89% dla XGBoost do 54.25%
dla drzewa decyzyjnego) są zrównoważone, co wskazuje na to, że LFM pozwala
na bardziej efektywną klasyfikację obu klas, pomimo niższej ogólnej dokładności.

Dla pytania Q13 ("Czy stwierdzenie zawiera treści religijne?"), wyniki w
Tabeli 5.38 również wykazują niską dokładność (od 33.08% do 37.61%). Mimo
to, zbalansowana dokładność jest akceptowalna (od 65,31% do 66.91%). Wyniki
metryki 𝐹1 dla klasy 0 (od 27.81% do 29.30%) i dla klasy 1 (od 37.61% do
45.41%) są znacznie bardziej zbalansowane niż w metodzie referencyjnej, co
sugeruje lepszą zdolność do rozróżniania klas.
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Tabela 5.37: Tabela z wynikami eksperymentów metody LFM pytanie Q12

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.4394 0.4691 0.4801 0.4542
Balanced Accuracy 0.6619 0.6761 0.6734 0.6823
𝐹1 (0) 0.3948 0.4093 0.4034 0.4182
𝐹1 (1) 0.4789 0.5200 0.5425 0.4869
Precision (0) 0.2917 0.3075 0.3016 0.3156
Precision (1) 0.9537 0.9701 0.9623 0.9793
Recall (0) 0.9537 0.9654 0.9438 0.9793
Recall (1) 0.3508 0.3867 0.4031 0.3634

Tabela 5.38: Tabela z wynikami eksperymentów metody LFM pytanie Q13

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.3409 0.3662 0.3761 0.3308
Balanced Accuracy 0.6585 0.6691 0.6531 0.6545
𝐹1 (0) 0.2830 0.2930 0.2781 0.2796
𝐹1 (1) 0.3915 0.4279 0.4541 0.3761
Precision (0) 0.2221 0.2322 0.2179 0.2188
Precision (1) 0.9604 0.9704 0.9564 0.9572
Recall (0) 0.9604 0.9704 0.9553 0.9572
Recall (1) 0.2888 0.3165 0.3306 0.2776

5.3.3 Wyniki dla metody GEM

W niniejszym podrozdziale przedstawiono i omówiono wyniki uzyskane dla
eksperymentów z zaproponowaną hybrydową metodą ekstrakcji cech GEM.

Dla pytania Q1 ("Czy istnieje co najmniej jedno wiarygodne źródło, które po-
twierdza wszystkie informacje zawarte w treści?"), wyniki przedstawione w Tabeli
5.39 pokazują, że dokładność modeli waha się od 81,21% (drzewo decyzyjne) do
83.21% (SVM). Natomiast zbalansowana dokładność wynosi od 81.61% (drzewo
decyzyjne) do 82.90% (SVM).

Wyniki dla pytania Q2 ("Czy większość podanych informacji jest potwier-
dzona przez wiarygodne źródła?"), widoczne w Tabeli 5.40, są bardzo podobne.
Dokładność utrzymuje się w zakresie od 81.68% (XGBoost) do 82.87% (SVM), a
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zbalansowana dokładność jest konsekwentnie wysoka. Analogicznie, metryka 𝐹1
dla klasy 0 (od 83.48% dla XGBoost do 87.18% dla MLP) i dla klasy 1 (od 76.69%
dla MLP do 79.34% dla XGBoost) potwierdzają zbalansowaną dokładność kla-
syfikatorów, świadcząc o zdolności metody GEM do tworzenia zbalansowanego
zestawu cech.

Tabela 5.39: Wyniki metody GEM – pytanie Q1

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8153 0.8321 0.8121 0.8164
Balanced Accuracy 0.8253 0.8290 0.8161 0.8221
𝐹1 (0) 0.8380 0.8751 0.8522 0.8693
𝐹1 (1) 0.7875 0.7820 0.7719 0.7641
Precision (0) 0.9185 0.9194 0.9048 0.9023
Precision (1) 0.7252 0.7412 0.7236 0.7241
Recall (0) 0.7689 0.8357 0.8045 0.8404
Recall (1) 0.8816 0.8222 0.8298 0.8073

Tabela 5.40: Wyniki metody GEM – pytanie Q2

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8168 0.8287 0.8203 0.8246
Balanced Accuracy 0.8239 0.8266 0.8194 0.8224
𝐹1 (0) 0.8348 0.8662 0.8579 0.8718
𝐹1 (1) 0.7934 0.7864 0.7753 0.7669
Precision (0) 0.9098 0.9140 0.9009 0.8995
Precision (1) 0.7300 0.7433 0.7342 0.7335
Recall (0) 0.7739 0.8263 0.8183 0.8471
Recall (1) 0.8740 0.8268 0.8215 0.8044

W przypadku pytania Q3 ("Czy żadna z informacji nie jest potwierdzona
przez wiarygodne źródła?"), wyniki w Tabeli 5.41 wskazują na niższą w porów-
naniu do pytań Q1 i Q2 dokładność (od 73.37% dla MLP do 75.68% dla SVM).
Jednakże, zbalansowana dokładność wynosi od 80.09% dla MLP do 80.61% dla
SVM. Jest to szczególnie istotne, ponieważ ta metoda dobrze radzi sobie z danymi
niezbalansowanymi i nie wykazuje problemów typowych dla innych metod.

Dla pytania Q4 ("Czy stwierdzenie odnosi się do aktualnych danych?"), wy-
niki w Tabeli 5.42 pokazują dokładność w zakresie od 79.14% do 81.14%. Zba-
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lansowana dokładność jest również wysoka i spójna (od 82.54% dla XGBoost
i drzewa decyzyjnego do 82.88% dla SVM). Uzyskane wyniki są dobrze zba-
lansowane, co potwierdza skuteczność GEM w generowaniu cech sprzyjających
równomiernej klasyfikacji.

Tabela 5.41: Wyniki metody GEM – pytanie Q3

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8380 0.8568 0.8481 0.8337
Balanced Accuracy 0.8056 0.8061 0.8040 0.8009
𝐹1 (0) 0.7035 0.6965 0.7062 0.7028
𝐹1 (1) 0.7642 0.8007 0.8763 0.8592
Precision (0) 0.5910 0.5887 0.5871 0.5831
Precision (1) 0.9151 0.9141 0.9182 0.9176
Recall (0) 0.9626 0.9219 0.9655 0.9695
Recall (1) 0.6487 0.6904 0.6511 0.6377

Tabela 5.42: Wyniki metody GEM – pytanie Q4

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7914 0.8109 0.8082 0.8114
Balanced Accuracy 0.8254 0.8288 0.8254 0.8286
𝐹1 (0) 0.8143 0.8626 0.8547 0.8588
𝐹1 (1) 0.7623 0.7540 0.7524 0.7527
Precision (0) 0.9837 0.9816 0.9781 0.9792
Precision (1) 0.6563 0.6622 0.6582 0.6576
Recall (0) 0.7031 0.7789 0.7675 0.7725
Recall (1) 0.9477 0.8787 0.8822 0.8803

Wyniki dla pytania Q5 (“Czy do właściwego zrozumienia treści wymagane są
dodatkowe informacje?”), przedstawione w Tabeli 5.43, pokazują dokładność od
81.01% do 86.86%. Zbalansowana dokładność mieści się w zakresie od 71.12%
(SVM) do 78.08% (MLP). Warto zwrócić uwagę, że SVM, mimo najwyższej
dokładności, ma najniższą zbalansowaną dokładność, co sugeruje faworyzowanie
klasy większościowej.

Dla pytania Q6 ("Czy treść zawiera nieścisłości?"), wyniki w Tabeli 5.44 wy-
kazują dokładność w zakresie od 81.78% do 88.83%. Podobnie jak w poprzednim
pytaniu, zbalansowana dokładność dla SVM wynosi 71.38% i jest najniższa.
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Tabela 5.43: Tabela z wynikami eksperymentów metody GEM na pytanie Q5

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8601 0.8686 0.8101 0.8572
Balanced Accuracy 0.7769 0.7112 0.7755 0.7808
𝐹1 (0) 0.5620 0.2113 0.6419 0.5790
𝐹1 (1) 0.9798 0.9045 0.9063 0.9730
Precision (0) 0.6358 0.2113 0.6207 0.6409
Precision (1) 0.9273 0.8686 0.9287 0.9299
Recall (0) 0.5125 0.2113 0.6657 0.5381
Recall (1) 0.9413 0.9513 0.8853 0.9235

Tabela 5.44: Tabela z wynikami eksperymentów metody GEM na pytanie Q6

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8740 0.8883 0.8178 0.8717
Balanced Accuracy 0.7740 0.7138 0.7741 0.7776
𝐹1 (0) 0.5373 0.2138 0.6241 0.5530
𝐹1 (1) 0.9967 0.9194 0.9211 0.8921
Precision (0) 0.6152 0.2138 0.6022 0.6205
Precision (1) 0.9423 0.8883 0.9444 0.9445
Recall (0) 0.4875 0.2138 0.6489 0.5079
Recall (1) 0.9605 0.9538 0.8993 0.9473

Tabela 5.45: Tabela z wynikami eksperymentów metody GEM na pytanie Q7

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8771 0.9534 0.8463 0.9094
Balanced Accuracy 0.7441 0.7426 0.7790 0.7803
𝐹1 (0) 0.4789 0.2426 0.5943 0.5187
𝐹1 (1) 0.8976 0.9735 0.8598 0.9298
Precision (0) 0.5621 0.2426 0.5726 0.5953
Precision (1) 0.8441 0.8534 0.8825 0.8811
Recall (0) 0.3285 0.1426 0.5193 0.3741
Recall (1) 0.9588 0.9826 0.8386 0.9767
Specificity 0.8857 0.9033 0.9262 0.9168
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Wyniki dla pytania Q7 ("Czy stwierdzenie zawiera fragmenty wyrwane z
kontekstu?") znajdują się w Tabeli 5.45. Dokładność waha się od 84.63% (drzewo
decyzyjne) do 95.34% (SVM). Zbalansowana dokładność jest na poziomie od
74.26% (SVM) do 78.03% (MLP). Tutaj SVM również, mimo najwyższej dokład-
ności, nie ma najlepszej zbalansowanej dokładności.

Dla pytania Q8 ("Czy autor stwierdzenia stosuje wybiórcze przedstawianie
faktów?"), wyniki w Tabeli 5.46 pokazują dokładność w zakresie od 72.65%
(drzewo decyzyjne) do 83.74% (SVM). Zbalansowana dokładność wynosi od
64.08% (SVM) do 67.08% (XGBoost).

Tabela 5.46: Tabela z wynikami eksperymentów metody GEM na pytanie Q8

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.7920 0.8374 0.7265 0.7652
Balanced Accuracy 0.6708 0.6408 0.6668 0.6653
𝐹1 (0) 0.4103 0.1408 0.4919 0.4363
𝐹1 (1) 0.9161 0.9619 0.8391 0.8873
Precision (0) 0.4878 0.1408 0.4718 0.4741
Precision (1) 0.8622 0.8374 0.8609 0.8594
Recall (0) 0.3625 0.1408 0.5149 0.4112
Recall (1) 0.9790 0.9808 0.8186 0.9195

Tabela 5.47: Tabela z wynikami eksperymentów metody GEM na pytanie Q9

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.8990 0.9698 0.8197 0.9310
Balanced Accuracy 0.6273 0.6388 0.6248 0.6503
𝐹1 (0) 0.2469 0.1388 0.3127 0.2601
𝐹1 (1) 0.9630 0.9788 0.9341 0.9830
Precision (0) 0.3059 0.1388 0.2978 0.3417
Precision (1) 0.9553 0.9698 0.9496 0.9762
Recall (0) 0.2167 0.1388 0.3305 0.2264
Recall (1) 0.9630 0.9788 0.9192 0.9830

Wyniki dla pytania Q9 ("Czy autor stwierdzenia próbuje wprowadzić czytel-
nika w błąd?"), przedstawione w Tabeli 5.47, pokazują wysoką dokładność dla
SVM (96.98%) i MLP (93.10%). Jednak zbalansowana dokładność jest znacznie
niższa, w zakresie od 62.48% do 65.03%.

79

79:70892309



Tabela 5.48: Tabela z wynikami eksperymentów metody GEM na pytanie Q10

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9835 0.9663 0.9222 0.9590
Balanced Accuracy 0.6514 0.6263 0.6212 0.6282
𝐹1 (0) 0.2282 0.1263 0.2327 0.1872
𝐹1 (1) 0.9835 0.9663 0.9520 0.9590
Precision (0) 0.2641 0.1263 0.2189 0.2768
Precision (1) 0.9835 0.9663 0.9520 0.9590
Recall (0) 0.2087 0.1263 0.2505 0.1630
Recall (1) 0.9835 0.9663 0.9520 0.9590

Tabela 5.49: Tabela z wynikami eksperymentów metody GEM na pytanie Q11

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9766 0.9803 0.9496 0.9660
Balanced Accuracy 0.6357 0.6403 0.6151 0.6276
𝐹1 (0) 0.1919 0.1403 0.2044 0.1579
𝐹1 (1) 0.9766 0.9803 0.9561 0.9660
Precision (0) 0.2132 0.1403 0.1946 0.2218
Precision (1) 0.9766 0.9803 0.9561 0.9660
Recall (0) 0.1800 0.1403 0.2171 0.1452
Recall (1) 0.9766 0.9803 0.9561 0.9660

Dla pytania "Czy treść ma charakter satyryczny?", wyniki w Tabeli 5.48
również prezentują wysoką dokładność (od 92.22% dla drzewa decyzyjnego do
98.35% dla XGBoost). Zbalansowana dokładność jest znacznie niższa (od 62.12%
do 65.14%). Analizując uzyskane wyniki widoczny jest problem niezbalansowa-
nia, gdzie modele doskonale klasyfikują klasę dominującą, ale z trudnością roz-
poznają mniejszościową.

Dla pytania Q11 ("Czy autor przyznaje, że przedstawione fakty są zmy-
ślone?"), wyniki w Tabeli 5.49 pokazują wysoką dokładność (od 94.96% do
98.03%). Zbalansowana dokładność waha się od 61.51% (drzewo decyzyjne) do
64.03% (SVM). Podobnie jak w poprzednich pytaniach, rezultaty metryki 𝐹1 dla
klasy 0 są bardzo niskie (od 14.03% dla SVM do 20.44% dla drzewa decyzyjnego),
a dla klasy 1 bardzo wysokie (od 95.61% dla drzewa decyzyjnego do 98.03% dla
SVM).
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Tabela 5.50: Tabela z wynikami eksperymentów metody GEM na pytanie Q12

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9707 0.9765 0.9078 0.9496
Balanced Accuracy 0.7042 0.6365 0.7035 0.6726
𝐹1 (0) 0.3753 0.1365 0.3904 0.3455
𝐹1 (1) 0.9882 0.9765 0.9876 0.9506
Precision (0) 0.4468 0.1365 0.3682 0.4810
Precision (1) 0.9882 0.9765 0.9876 0.9506
Recall (0) 0.3315 0.1365 0.4177 0.2832
Recall (1) 0.9882 0.9765 0.9873 0.9506

Wyniki dla pytania "Czy stwierdzenie zawiera obietnice polityczne?"są przed-
stawione w Tabeli 5.50. Dokładność wynosi od 90.78% dla drzewa decyzyjnego
do 97.65% dla SVM. Zbalansowana dokładność przyjmuje wartości od 63.65%
(SVM) do 70.42% (XGBoost).

Dla pytania Q13 ("Czy stwierdzenie zawiera treści religijne?"), wyniki w
Tabeli 5.51 również wykazują wysoką dokładność (od 96.11% dla XGBoost do
98.07% dla MLP). Zbalansowana dokładność wynosi od 63.82% (XGBoost) do
65.13% (drzewo decyzyjne).

Tabela 5.51: Tabela z wynikami eksperymentów metody GEM na pytanie Q13

Metryka XGBoost SVM DECISION TREE MLP

Accuracy 0.9611 0.9780 0.9725 0.9807
Balanced Accuracy 0.6382 0.6200 0.6513 0.6460
𝐹1 (0) 0.2124 0.1200 0.2427 0.1812
𝐹1 (1) 0.9611 0.9780 0.9725 0.9807
Precision (0) 0.2475 0.1200 0.2299 0.2570
Precision (1) 0.9611 0.9780 0.9725 0.9807
Recall (0) 0.1927 0.1200 0.2594 0.1654
Recall (1) 0.9611 0.9780 0.9725 0.9807

Analiza statystyczna przeprowadzona dla wszystkich trzech grup pytań po-
twierdziła spójność uzyskanych rezultatów. Test Friedmana wykazał istnienie sta-
tystycznie istotnych różnic między badanymi rozwiązaniami w każdym z rozwa-
żanych przypadków:
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• grupa czynników weryfikacyjnych 𝜒2 = 22.00, 𝑝 = 0.00002,

• grupa czynników manipulacyjnych 𝜒2 = 22.00, 𝑝 = 0.00002,

• grupa czynników metafizycznych 𝜒2 = 20.18, 𝑝 = 0.00004.

Szczegółowe testy post-hoc Wilcoxona z zastosowaniem korekcji Holma-Bonferroniego
wykazały, że we wszystkich grupach różnice między każdą parą metod są staty-
stycznie istotne.

We wszystkich analizowanych scenariuszach hierarchia rozwiązań pozostała
niezmienna, co obrazuje poniższe zestawienie średnich rang Friedmana (tab.5.52).

Tabela 5.52: Zestawienie średnich rang Friedmana

Grupa czynników GEM LFM Referencyjna

weryfikacyjnych 1.00 2.00 3.00
manipulacyjnych 1.00 2.00 3.00
metafizycznych 1.00 2.09 2.91

Najlepsze wyniki konsekwentnie osiągała metoda GEM, która w każdej gru-
pie uzyskała najniższą możliwą średnią rangę. Na drugim miejscu uplasowała się
metoda LFM, natomiast najniższą efektywność odnotowano dla metody referen-
cyjnej. Uzyskane wyniki pokazują, że zastosowanie hybrydowych metod ekstrakcji
cech w problemie detekcji dezinformacji statystycznie istotnie poprawia skutecz-
ność detekcji.

5.4 Analiza porównawcza z wynikami przedstawionymi w innych pra-
cach naukowych

W niniejszym podrozdziale dokonano analizy porównawczej wyników uzy-
skanych w ramach przeprowadzonych badań z rezultatami dostępnymi w innych
badaniach naukowych. W analizie tej skupiono się na porównaniu wyników z
polskim zbiorem Openfact.

W tabeli 5.53 przedstawione zostały wyniki zaprezentowane w pracy [98].
Wyniki te zawierają porównanie modeli GPT oraz BERT.
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Tabela 5.53: Porównanie modeli na zbiorze OpenFact na podstawie [98]

Model 𝐹1 Precision Recall Accuracy

GPT-3 curie fine-tuned curated 0.898 0.948 0.852 0.934
DeBERTa v3 base fine-tuned 0.894 0.978 0.824 0.934
GPT-3 davinci fine-tuned curated 0.876 0.946 0.815 0.921
RoBERTa base fine-tuned 0.862 0.966 0.778 0.915
RoBERTa base fine-tuned with custom
optimizer layer-wise learning rate de-
cay

0.860 0.976 0.769 0.915

LightGBM ensemble of all BERT-
based models and additional embed-
dings

0.854 0.976 0.759 0.912

ELECTRA fine-tuned 0.851 0.954 0.769 0.909
AlBERT large v2 fine-tuned 0.848 0.976 0.750 0.909
DistilBERT base uncased fine-tuned 0.827 0.952 0.731 0.896
GPT-3 curie fine-tuned random 0.826 1.000 0.704 0.899
GPT neo 125M fine-tuned 0.800 0.961 0.685 0.884
GPT-4 few-shot learning 0.788 0.867 0.722 0.868
GPT-4 zero-shot learning 0.778 0.710 0.861 0.833
GPT-4 Chain-of-Thought 0.722 0.574 0.972 0.745
LFM (metoda autorska) 0.8347 0.8554 0.8165 0.8744
GEM (metoda autorska) 0.9047 0.9254 0.8865 0.9444

Analiza uzyskanych wyników dla zaproponowanych metod (Tabele 5.11 oraz
5.12) pozwala na interesujące porównanie z wynikami modeli opisanych w litera-
turze.

Mimo, że część modeli przedstawionych w Tabeli 5.53 to duże modele ję-
zykowe (LLM), wyniki uzyskane w niniejszej pracy pokazują, że klasyczne al-
gorytmy uczenia maszynowego w połączeniu z zaproponowanymi hybrydowymi
metodami ekstrakcji cech (LFM i GEM), okazują się być konkurencyjne, a na-
wet osiągają lepsze wyniki niż te przedstawione we wspomnianej publikacji. W
szczególności analizując wyniki uzyskane w ramach metody GEM widać wyraźną
poprawę wyników.
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5.5 Analiza wpływu komponentów modelu na otrzymane wyniki

Przeprowadzone badanie wpływu komponentów modelu miało na celu szcze-
gółową analizę wpływu poszczególnych modułów zaproponowanych metod. Ce-
lem badania była ocena synergicznego działania wszystkich elementów zapropo-
nowanych metod oraz ocena wpływu braku któregokolwiek z nich na działanie
metody. Badanie to zostało przeprowadzone na wszystkich zbiorach danych wy-
korzystanych w niniejszej pracy, a uzyskane wyniki uśrednione i przedstawione
poniżej. Jako miarę wykorzystano metrykę dokładności.

Rysunek 5.1: Uśrednione wartości wpływu komponentów w metodzie LFM

Na wykresie 5.1 zostały przedstawione wyniki metody LFM. Uzyskane wy-
niki jednoznacznie wskazują, że najlepsze rezultaty w tej metodzie osiągane są w
sytuacji, gdy reprezentacje tekstu pochodzą jednocześnie z modelu BERT (Distil-
BERT) i TF-IDF. Jak widać na przedstawionym wykresie zaproponowana metoda
z synergicznym działaniem obu komponentów, osiąga najwyższe wyniki. Nato-
miast w przypadku scenariusza, w którym zabrakło danych z modelu DistilBERT
uzyskane wyniki są gorsze od 15.49% dla modelu drzew decyzyjnych do 6.29%
dla modelu SVM. Natomiast sama reprezentacja BERT, bez TF-IDF dała rezultaty
niższe o -1.92% dla drzew decyzyjnych do -1.22% dla modelu XGBoost.

Na wykresie 5.2 zostały przedstawione wyniki metody GEM. Z analizy otrzy-
manych rezultatów wynika, że największy negatywny wpływ na otrzymane wyniki
ma usunięcie grafu spójności (kolor niebieski). Jego usunięcie powoduje spadek
skuteczności od -5.83% dla drzew decyzyjnych do aż -11.5% dla MLP. Istotne
znaczenie mają również graf wiedzy zewnętrznej (kolor pomarańczowy) i graf
wynikania logicznego (kolor zielony), które najmocniej osłabiają modele SVM i
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MLP.

Najmniejszy wpływ na wyniki ma usunięcie grafu przyczynowo-skutkowego
(kolor szary). Co interesujące, w przypadku modelu XGBoost jego brak powoduje
nawet nieznaczną poprawę wyniku o 1.17%. Najbardziej wrażliwymi na brak
analizowanych komponentów grafowych okazały się modele MLP i SVM, gdzie
zanotowano największe łączne spadki skuteczności.

Rysunek 5.2: Uśrednione wartości wpływu komponentów w metodzie GEM

Podsumowując, analiza wyników obu metod uwydatnia znaczenie odpowied-
niego doboru i synergicznego łączenia różnych komponentów reprezentacji tekstu
(LFM) oraz strategii przetwarzania tekstu (GEM). Takie podejście jest niezbędne
do osiągnięcia dużej efektywności w zadaniach związanych z detekcją dezinfor-
macji, co bezpośrednio przekłada się na skuteczność jej zwalczania. Uzyskane
wyniki jednoznacznie pokazują, że zastosowanie modeli hybrydowych znacząco
poprawia skuteczność systemów, w pełni potwierdzając postawioną w pracy tezę.
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6. Podsumowanie

W niniejszej rozprawie zaproponowano nowe autorskie hybrydowe metody
ekstrakcji cech tekstu przeznaczone do detekcji dezinformacji.

W przedłożonej pracy udowodniono słuszność podejścia polegającego na
wykorzystaniu metod hybrydowych oraz ich przewagę w efektywności detekcji
dezinformacji nad metodami bazującymi na modelach transformerowych. Ponadto
w pracy udowodniono, iż proponowane metody lepiej radzą sobie także w przy-
padku danych niezbalansowanych. W rozprawie zademonstrowano także dobrą
skuteczność hybrydowych metod wykrywania dezinformacji na zbiorach danych
w językach mniej zasobnych, np. w języku polskim.

W pracy potwierdzono hipotezę, że zastosowanie hybrydowych metod eks-
trakcji cech, łączących reprezentacje semantyczne, logiczne, kontekstowe oraz
przyczynowo-skutkowe z mechanizmem wag adaptacyjnych, pozwala na istotne
zwiększenie skuteczności detekcji dezinformacji w porównaniu z podejściami
opartymi wyłącznie na modelach transformerowych. Niniejszą hipotezę potwier-
dzono poprzez wykonanie następujących zadań badawczych:

1. Opracowanie hybrydowej metody ekstrakcji cech uwzględniającej struk-
turę leksykalną oraz kontekst semantyczny.
To zadanie zostało zrealizowane poprzez opracowanie metody LFM. Me-
toda ta opiera się na zastosowaniu modelu DistilBERT, który umożliwia
efektywne wychwycenie kontekstu semantycznego w tekście oraz statystycz-
nej metody TF-IDF, wykorzystywanej do uzyskania reprezentacji tekstu z
uwzględnieniem jego struktury leksykalnej. Dzięki połączeniu tych dwóch
podejść możliwe jest stworzenie reprezentacji tekstu, która bierze pod uwagę
zarówno znaczenie słów w kontekście, jak i ich względną ważność w całym
zbiorze danych. Takie podejście pozwala na bardziej precyzyjne modelo-
wanie informacji zawartych w tekście, uwzględniając jednocześnie aspekty
syntaktyczne i semantyczne.

2. Opracowanie metody łączącej informacje semantyczne, logiczne, kon-
tekstowe oraz przyczynowo-skutkowe w celu poprawy jakości ekstrakcji
cech.
To zadanie zostało zrealizowane poprzez opracowanie metody GEM, wyko-
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rzystującej zintegrowane podejście oparte na czterech typach grafów repre-
zentujących różne aspekty struktury tekstu. Wyniki uzyskane z poszczegól-
nych komponentów zostały następnie zintegrowane w jeden wektor cech,
który odzwierciedla zarówno znaczenie semantyczne, jak i relacje logiczne
oraz kontekstowe w analizowanym tekście. Takie połączenie umożliwiło
uzyskanie bogatszej i bardziej informatywnej reprezentacji tekstu, zwięk-
szającej jakość ekstrakcji informacji w porównaniu z podejściami bazują-
cymi wyłącznie na pojedynczych modelach semantycznych.

3. Zaprojektowanie mechanizmu wag adaptacyjnych, którego celem jest
dostosowanie znaczenia poszczególnych typów reprezentacji.
To zadanie zostało zrealizowane poprzez zaprojektowanie mechanizmu wag
adaptacyjnych w ramach enkodera (w metodzie LFM) opartego na dwóch
warstwach liniowych z funkcją aktywacji ReLU oraz mechanizmem Dro-
pout. Mechanizm ten umożliwia automatyczne dostosowanie znaczenia po-
szczególnych typów reprezentacji wejściowych zarówno pochodzących z
modelu BERT, jak i z wektoryzacji TF-IDF. Dzięki zastosowaniu wag adap-
tacyjnych sieć może dynamicznie przyznawać większą lub mniejszą istot-
ność każdej reprezentacji, co pozwala na uzyskanie bardziej precyzyjnej
i informatywnej reprezentacji tekstu. Takie podejście integruje zalety obu
typów reprezentacji, łącząc semantyczną głębię modelu BERT z bardziej
statystycznym podejściem TF-IDF.

4. Badanie skuteczności metod hybrydowych w detekcji dezinformacji w
porównaniu z referencyjnym podejściem opartym wyłącznie na mode-
lach transformerowych.
To zadanie zostało zrealizowane poprzez zastosowanie metod hybrydowych
ekstrakcji cech, które wskazują wyraźną przewagę w porównaniu z refe-
rencyjnym podejściem opartym wyłącznie na modelach transformerowych.
Analiza eksperymentalna wykazała, że zastosowanie autorskiej metody
GEM pozwala na uzyskanie ogólnej średnie skuteczności wyższej o około
10 punktów procentowych - 16 p.p. w odniesieniu do referencyjnej metody.
Metoda LFM również zwiększa ogólną skuteczność w stosunku do metody
referencyjnej, choć w mniejszym stopniu niż ma to miejsce w przypadku
metody GEM. Wyniki uzyskane przez tą metodę mieszczą się w przedziale
od 0.77 p.p. (XGBoost) do 11.44 p.p. (SVM). Warto zwrócić jednak uwagę
na szczególnie istotne zmiany w metrykach klasy mniejszościowej, gdzie
metoda LFM zwiększa 𝐹1, czułość oraz zbalansowaną dokładność nawet
o kilkadziesiąt punktów procentowych, co wskazuje na skuteczne radzenie
sobie z problemem niezbalansowanych danych. Metoda GEM nie tylko po-
prawia 𝐹1 i czułość dla obu klas, ale również zwiększa ogólną precyzję, co
przekłada się na bardziej zbalansowaną i stabilną detekcję dezinformacji.
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W przypadku wszystkich klasyfikatorów GEM osiąga najlepsze wyniki w
większości metryk, zapewniając średnią poprawę w skuteczności o ponad
10 p.p. Wyniki te jednoznacznie potwierdzają, że integracja różnych typów
reprezentacji cech w metodach hybrydowych znacząco zwiększa skutecz-
ność detekcji dezinformacji, zarówno w kontekście jakości klasyfikacji, jak
i odporności na nierównomierne rozłożenie klas.

5. Przeprowadzenie eksperymentalnej ewaluacji proponowanych metod
hybrydowych w zestawieniu z innymi podejściami opisanymi w litera-
turze w kontekście klasyfikacji dezinformacji.
Przeprowadzona eksperymentalna ewaluacja autorskich metod hybrydo-
wych LFM oraz GEM, w kontekście klasyfikacji dezinformacji wykazała
wyraźną przewagę nad metodami opartymi wyłącznie ma modelach trans-
formerowych, w tym GPT-3, GPT-4 czy Electra. Wyniki przedstawione w
literaturze pokazują, że metoda GEM osiąga najwyższą skuteczność spo-
śród testowanych podejść. Natomiast metoda LFM mimo osiągnięcia niż-
szych wyników, charakteryzuje się wyższą równowagą między precyzją a
czułością w porównaniu do metod dostępnych w literaturze. Ponadto podej-
ście to charakteryzuje się odpornością na problem niezbalansowania klas.
Uzyskane wyniki i porównane z dostępnymi źródłami wskazują, że integra-
cja różnych typów reprezentacji cech w metodach hybrydowych znacząco
zwiększa skuteczność detekcji dezinformacji, jak i odporność na nierówno-
mierne rozłożenie klas.
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