
University of Science and
Technology in Bydgoszcz

Institute of Telecommunications
and Computer Science

PhD Thesis

Marek Pawlicki

The Application of Machine Learning
in Network Intrusion Detection

Supervisors

Michał Choraś

Rafał Kozik

Bydgoszcz 2020

Contents

1. Introduction . 4
1.1. Motivation . 4

2. Part One: Network Intrusion Detection . 6
2.1. The Signature-based Approach . 7
2.2. The Anomaly-based Approach . 7
2.3. Machine Learning for Intrusion Detection - State of The Art 8
2.4. Artificial Neural Networks in Intrusion Detection 10
2.5. The Proposed Method Based on Artificial Neural Network 11

2.5.1. The Usage of Backpropagation 13
2.5.2. Improving the selected algorithms with hyperparameter

optimization . 13
2.5.3. Dimensionality Reduction . 14

2.6. Experimental Setup and Results . 15
2.6.1. Description of chosen datasets 15
2.6.2. Experimental Setup . 16
2.6.3. Cross-Validation . 17
2.6.4. Comparison to other state of the art machine learning algorithms 17

2.7. Results . 20
2.8. Machine Learning Approach Enhanced with Data Balancer 20
2.9. Balancing Methods . 21

2.9.1. Data-related Balancing Methods 24
2.9.2. Algorithm-related Balancing Methods 25
2.9.3. Results and Perspectives . 26

2.10. Gated Recurrent Unit in Network Intrusion Detection 29
2.11. Recurrent Neural Networks . 30

2.11.1. Long Short-Term Memory and GRU 30
2.12. Using Gated Recurrent Units for feature extraction 31

3. Part two: Adversarial Attack Detection . 33
3.1. Introduction . 33
3.2. Overview of adversarial attacks . 34
3.3. Experiments . 35

3.3.1. Original Classifier . 35
3.3.2. Model Extraction . 36
3.3.3. Experimental Process . 36
3.3.4. Adversarial Machine Learning and Attack Generation 39
3.3.5. Countering Adversarial Attacks 41

2

3.4. Proposed Method for Evasion Attack Detection in Neural Networks . . . 41
3.4.1. Evasion Adversarial Attacks 42
3.4.2. Detection Method . 44

3.5. The Evaluation of the Adversarial Attack Detector 44

4. Conclusion . 47

References . 48

List of Figures . 54

List of Tables . 55

1. Introduction

In this section the motivation for this work is given, and the thesis is formula-
ted. The authors publications in the domain pertaining to the dissertation are also
disclosed.

1.1. Motivation

The proliferation of communication and commerce over networking architec-
tures has put reliable cyber security solutions in high demand. Cyber security
issues concerning individuals or organizations can develop into disastrous sce-
narios, like losing critical information, promoting relentless attacks (on critical
infrastructure as well), or contributing to a distributed denial of service (DDoS)
attack [12, 77].

Every single day societies, businesses and citizens in person are under siege
by a wide array of cyberthreats including malware, worms, trojan horses, spyware,
SQLI, XSS, ransomware [49], and many, many more. In a sense all those mali-
cious instances have simply become part of our daily routine. A short while ago,
at the beginning of 2018, a banking malware geared towards android has plunde-
red the wallets of unsuspecting bank app users [4]. The new BankBot strain was
altered to such a degree that it was granted passage through the Google Play Store
antivirus protection, even though BankBot is a well-known malware. The trojan
operated under the guise of what was a benevolent application at a first glance, but
once set up on an Android device, it proceeded to appropriate the bank’s access
credentials.

A very well known case of cross-site scripting (XSS) took place when eBay
turned out to be vulnerable to attack [33]. In 2014 JavaScript code was being
included in costly item’s listings. The user only had to click a malicious, but
benign-looking listing to have the script seize control of his browser, get redirected
to a site that looked exactly like eBay, and have their credit card credentials stolen.
A recent report [51] suggests that the vulnerability has not been fixed after all
those years.

Early 2018 was marked by a security violation that touched over 150 million
users of a popular fitness app, MyFitnessPal. The media coverage of the breach
tried to pass the event as "just another day on the Internet"[43]. With the prevailing

4

risk of both new and known cybersecurity threats it is very tempting to just nod in
agreement with that assertion.

The wide range of cybersecurity violations resulted in spurring an array of
different detection methods. Two main trends of research and development emer-
ged, namely signature-based and anomaly-based. Signature-based IDS (Intrusion
Detection Systems) operate utilising a storehouse of recognized attacks, while
anomaly-based methods form a model of ’normal’ traffic and go into alert whene-
ver there has been spotted a divergence from the model [31].

The black-hat society utilises numerous obfuscation techniques to deceive the
signature-based detectors. According to a recent analysis, known malevolent so-
ftware can be made absolutely invisible to contemporary anti-malware applica-
tions [11].

The security of any given system comes in a direct proportion to the decisions
both the organisations and the individuals make with regards to security require-
ments and their relative prioritisation.

In this section the author lists a number of recent events that make this kind of
endeavour relevant.

The thesis is formulated as follows: "It is possible to design complex machine
learning algorithms for effective detection of attacks based on network flows,
and to design techniques of improving their credibility and security (detection
of adversarial attacks)". The aim of the dissertation is therefore to put forward a
modification of a machine learning method and a method of detecting adversarial
attacks on machine learning. This causes the work to be split into two major
parts. The first part is entitled ’Network Intrusion Detection’, and the second part
’Adversarial Attack Detection’.

5

2. Part One: Network Intrusion Detection

The analysis performed by an IDS is based on local data provided by a set
of independent probes deployed in different places of the monitored distributed
system. Each of these observation devices is responsible for monitoring a small,
well-defined part of the entire system and reporting what is going on. Depending
on whether a probe monitors the activity of a particular machine or the activity
at a particular point in the communication network, IDSes are classified in three
main classes, namely HIDS (Host based Intrusion Detection System), NIDS (Ne-
twork based Intrusion Detection System), and Hybrid IDS. Whatever the obse-
rved targets (computation devices or communication links), the reported infor-
mation either corresponds to a raw observation of an activity (i.e., an occurrence
of an event) or is the result of a first low level analysis that identifies a suspi-
cious local behavior (i.e., a low level alert). The locally generated information
is usually stored in logs and journals. It is also sent in messages to an analysis
tool that centralizes the data and carries out a deeper global analysis: this acti-
vity is a key feature of a Security Information and Event Management (SIEM).
Note that this two-level analysis (local and global) can be replaced by a more
complex hierarchical structure dedicated to data collection and analysis. In any
case, the gathered information is ordered according to the occurence date of each
element and thus a unique flow (or stream) of timestamped data (events and low
level alerts) is created. While combining outputs from different sources/probes,
a pre-processing step is often performed to homogenize, correct, and reduce the
flow of elements [74]. Indeed, since the probes are heterogeneous, the informa-
tion they provide in their messages has to be restructured and standardized using
a unique description language.

The lowest common denominator of cyber-attack detection are the machine
learning methods: the detection is as weak (or strong), as weak are the data
processing approaches.

Two classical approaches are covered and discussed separately even if one of
the proposed challenges is to combine them: the signature-based approach and
the anomaly-based approach

A bulk of state-of-the-art research does not provide reliable performance re-
sults since they rely on either the KDD99 or NSL-KDD benchmark datasets,
which is concocted of traffic that is over 20 years old, hence it does not represent

6

recent attack scenarios and traffic behaviours. Obtaining traffic from simulated
environments can help overcome this issue when merged with testing more recent
datasets, such as the CICIDS 2017 [7]. Published datasets are available for dif-
ferent domains, such as industrial control systems (ICS) [30]. The observed data
that will be provided to us in the context of Sparta will complete the currently
limited panel of available datasets.

2.1. The Signature-based Approach

A signature-based approach relies on the apriori knowledge of some possible
attacks. Patterns of malicious traffic/activity are compared to current samples, and
if a match is found an alarm is raised

The signature-based approach has the advantage of causing very few false
positives if the description of the attack and the associated correlation rules are
sufficiently accurate. Regarding the false negatives, only the known attacks can
be detected. A new attack or even an attack that is intentionally slightly different
from a known one are not necessarily detected (0-day exploit). Moreover, the
detection of a known attack occurs only if the probes are in sufficient number,
well placed to cover all the system and correctly configured.

2.2. The Anomaly-based Approach

The following procedure can serve as an outline for the approach: firstly, the
pattern of normality (normal traffic/activity) has to be established and then mat-
ched against the current traffic/activity samples. Whenever, the pattern deviates
from the established model an alarm is raised. This approach, however, is pla-
gued by false positives (false alarms). Quite frequently, when the characteristics
of network traffic (or e.g. HTTP requests in the application layer) evolve, such
situation is interpreted as anomalous, even though it is just an intrinsic feature of
network usage and of network users behaviour [6].

Concisely put, in setups where new attacks (or even slightly modified fami-
lies of malware) emerge continuously, the standard protection systems become
inconsequential until relevant signatures are collected [21]. On the other hand,
anomaly-based approaches (systems which detect abnormalities in traffic, e.g. ab-
normal requests to databases) tend to produce false positives (false alarms) [2, 63].

Thus numerous machine learning anomaly detection techniques are evaluated
by the scientific community.

7

2.3. Machine Learning for Intrusion Detection - State of The Art

Contemporary Artificial Intelligence-based Intrusion Detection algorithms
suffer from two main challenges. The traditional Machine Learning (ML) al-
gorithms are relatively fast, but at the same time encounter a high false positive
(FP) rate. On the other hand, Deep Learning displays high accuracy, low FP rates,
but a rather cumbersome computational time. Thus, the authors of [84] propose a
solution that gives the user the best of both worlds. The proposed solution is an OS
based monitoring algorithm that utilises standard ML as a fairly quick monitoring
device, called the ’standard stage’, and when classification occurs which falls into
the ’borderline’ status, the second stage of the algorithm is initialised. The second
stage, called ’uncertain’ utilises Deep Learning as the definitive decision-maker
on the maliciousness of a given process.

A Flow-Based Malware detection using a Convolutional Neural Network is
evaluated in [81]. The authors suggest that the contemporary detection methods
are too dependent on selected packet fields, like the port number, which presents a
blind spot for malware using unpredictable port numbers and protocols. Instead,
35 features extracted from packet flows of the data coming from the Stratosphere
IPS project are proposed. 2000 datapoints were selected in each class to solve
the data balance problem. The authors of [81] used Netmate to extract 35-flow
static features to feed to a Convolutional Neural Network and three other ML
algorithms, namely a support vector machine (SVM), a random forest (RF), and a
multi-layer perceptron (MLP) for evaluation. The models were trained using data
from the Stratosphere IPS project (public data). The CNN architecture consisted
of one input layer, five feature map layers, one flatten layer, two hidden layers,
and one output layer. The authors conclude that the RF algorithm outperforms the
remaining methods on all three evaluated indicators - Accuracy, Specificity and
Sensitivity. The CNN came in a close second.

In [60] the authors propose a novel, bioinspired way of stegomalware detec-
tion, based on an Artificial Immune System (AIS). It is capable of detecting code
hidden using three common-use steganographic tools - F5, Outguess and Ste-
ghide.

The proposed procedure extracts features from JPEG images with the use of
Haar Wavelets. An AIS is a sort of self-defining system, revolving around the
creation, identification and maintenance of ’self’, and vanquishing of anything
that does not meet the definition of ’self’. This particular AIS is based on Negative
Selection. The trained system was compared to a method based on SVM and it
demonstrated better detection rate and significantly faster performance.

In the case of mobile malware, [80] illustrates that the actions it can employ
are of a wide variety. That can make spotting mobile malware an ambitious
endeavor. The neverending adaptation to new circumstances causes the prevention

8

attempts to be an uphill battle. As a novel solution, the authors propose the
’DeepRefiner’, a semantic-based deep learning algorithm, displaying an accuracy
of 97.74% with a false positive rate of 2.54%, outperforming the comparison,
industry-standard methods by a wide margin.

In [78] the problem of selecting proper features for IDS is evaluated. An
idea of a hierarchical spatial-temporal features-based intrusion detection system
(HAST-IDS) is proposed. The architecture would first recognize the low-level
features with the use of a CNN and then the high-level features of traffic with the
employment of an LSTM. The feature learning is performed automatically, in its
entirety. This process reduces the false alarm rate. Two benchmark datasets are
used to test-run the idea: DARPA1998 and ISCX2012. The performance of this
set-up is superior in terms of accuracy, detection rate and false positive rate, as
compared to other state-of-the-art methods.

In [76] authors extensively test Deep Neural Networks for the use in IDS over
a range of old and new datasets. They also come up with a scalable, hybrid,
DNN-based model which is suitable for real-time use. An attack could be roughly
systematized into five parts: reconnaissance, exploitation, reinforcement, conso-
lidation and finally pillage. When the malicious user reaches the fourth stage the
system is basically compromised.

The authors focus on the premise of self-learning systems, with either su-
pervised, semi-supervised or unsupervised algorithms. The main problem with
contemporary machine learning solutions is their high false-positive rate and their
high computational cost. The authors attribute this fault to learning TCP/IP
patterns in a local fashion, as opposed to the Deep Learning solutions. The
authors use a variety of benchmark datasets: KDDCup 99, NSL-KDD, Kyoto,
UNSW-NB15, WSN-DS, CICIDS2017.

In [62] an evaluation of both shallow and deep neural networks is performed,
as per their performance in the domain of intrusion detection. The tests are run
over the KDDCup99 dataset. DNN setups from one to five hidden layers, and
a suite of classical machine learning algorithms, including AdaBoost, Decision
Tree, K-Nearest Neighbour, Linear Regression, Naïve Bayes, Random Forest,
SVM-linear and SVM-rbf. The deep setups use a combination of dense and
dropout layers one after another to achieve regularization. After comparison, it
is clear that a 3-layer DNN outperforms all the other algorithms and setups for the
KDDCup99 benchmark dataset.

The authors of [52] perform yet another comparison of deep learning archi-
tectures’ performance over the NSL-KDD dataset. The methods evaluated are au-
toencoders (sparse, denoising, contractive, convolutional), LSTM and CNN. Au-
toencoders learn the latent representation of their inputs but changing the feature
space by reducing dimensions. Autoencoders have a 3-layer structure, input layer,
hidden layer and an output layer. Input and output layers contain the same number

9

of nodes. When the hidden layer has fewer neurons than the input/output layers,
it is called a bottleneck/discriminative/coding/abstraction layer. Forcing a bottle-
neck makes the autoencoder acquire the most significant features. A multi-layer
setups can also be possible for autoencoders. A sparse autoencoder employs a
sparsity penalty and a reconstruction error at the discriminative layer. The pro-
minent characteristic of a sparse autoencoder is that it mitigates overfitting. De-
noising autoencoders recover the uncorrupted version of a sample by minimizing
the objective function. The unique advantage of Contractive Autoencoders (Con-
tAE) is that they learn representations in a way that is resilient to small changes
in data. This characteristic is attained with the imposition of a Forbnius norm
of the Jacobian matrix for the encoder activations. The penalty term performs a
compression of the localized space, and through this compression, robustness to
small changes is gained. Convolutional autoencoders (ConvAE) use a Stochastic
Gradient Descent (SGD) to find non-trivial features, which are good initialisations
for a CNN, avoiding local minima. A fully connected ConvAE, in contrast to other
AE’s, preserve the special locality of features.

The methodology used in the evaluation of the DNN setups is as follows: all
the architectures, with the exception of ConvAE, are the same. The Autoencoders
are prepared with NSL-KDDTrain+. The bottleneck layer reduces the feature
space to 16 dimensions from 41. The reduced representations become the input
of an MLP. For sparce AE L1 regularisation is performed over the input of the
bottleneck. For DAE, the input is treated with Gaussian noise, with level of cor-
ruption at 50%. In Contractive AE the loss function is replaced with a contractive
loss. ConvAE needs input in the form of an image. NSL-KDD is converted to a
32x32 2d array. This method allows for the discovery of localized relationships in
the dataset. The weights of a ConvAE are shared among all locations of the input
matrix. The deep setups are compared with classic ML algorithms – Extreme Le-
arning Machine, k-NN, Decision-Tree, Random Forest, SVM, Naïve-Bayes and
QDA. DCNN and LSTM models perform at the accuracy of 85% and 89%, be-
ating the remaining setups.

2.4. Artificial Neural Networks in Intrusion Detection

Cybersecurity is a very broad topic, with different measures designed to co-
unter different attack vectors [20]. The application of Artificial Neural Networks
(ANN) for intrusion detection systems (IDS) and malware detection is hardly a
new concept. There have been evaluations of the notion of using ANN to aid ano-
maly detection and malware detection as far as in 2009 [64]. In [28] the authors
try to address the problems of overfitting, high memory consumption and high
overhead of standard IDS / malware detection with a feed-forward ANN. Speci-
fically, a 2-layered feed-forward ANN was recommended. The aforementioned

10

problems were handled through conjugated training function and validation da-
taset. The authors claim that their method achieves similar results to classical
procedures, but with less computational overhead. The procedure was tested on
the benchmark KDD’99 dataset. The conclusion of the paper states that less data
is better because of the time the machine needs to crunch it.

In [23] pruning of the ANN is evaluated as part of the optimisation of the
network. It is basically the deletion of neural nodes of either the input or the
hidden layers. This makes the ANN faster, as less computations have to be
processed. In [50] an Artificial Neural Network also showed promise as an IDS
when evaluated. The results were, in fact, very encouraging.

In [70] Principal Component Analysis (PCA) is employed as a feature extrac-
tor, before feeding the data to the ANN, as opposed to providing the inputs directly
from the dataset. As the article illustrates, this drops the memory requirements of
the method significantly, along with the time of training necessary. The two eva-
luated methods displayed comparable results as far as the accuracy is concerned.
This makes applying PCA clearly the better option. Using a Kernel PCA betters
the training time of ANN, but uses significantly more memory than traditional
PCA. Both methods have similar accuracy measures, so the authors of [58] conc-
lude that using a mix of different algorithms is preferable.

There has been research on utilising Graphical Processing Units to accelerate
ANN based IDS, since GPU’s are a good fit for ANN computations. An increase
in performance has been proven [75]. The authors of [71] evaluate an ANN with
one hidden layer in comparison with a Support Vector Machine, a Naive Bayes
and a C4.5 algorithm. The ANN achieves comparable, or better results in malware
detection, but thanks to the simpler nature of a 3-layer ANN framework requires
less computations than other tested algorithms. The experiments were performed
on the NSL-KDD dataset, which is the current benchmark, and the successor of
KDD’99.

2.5. The Proposed Method Based on Artificial Neural Network

Artificial Neural Networks (ANN) are an all-purpose utility for modeling.
With a myriad of applications, they are an accepted and renowned tool for data mi-
ning, with classification, regression, clustering and time series analysis abilities.
The basic assumption of an ANN is that it imitates, to a certain extent, the learning
competencies of a biological neural network, stressing by principle the properties
of neural networks found in human brains, although strongly streamlined. [48]

The surprising modeling capacity of ANN in pattern recognition derives from
its strong malleability as it fits to data. This extensive approximation capacity
is markedly important when handling real-world data, when the information is
plentiful, but the patterns buried in it remain uncovered.

11

In an ANN knowledge is gained through updating weights with consecutive
batches of data instances. The algorithm can recognise the associations among the
variables, as well as generalise in a way that allows for high performance on new,
unforseen data. [22] It is basically like fitting a line, or a plane, or a hyper-plane
through a set. [57].

An artificial neural network with a sole computational layer is dubbed a per-
ceptron. It consists of an input and an output, computational layer. After the data
points are fed to the input layer, they are issued to the computational layer. The
input layer contains d nodes that speak for d features X = [x1...xd] and edges
of weight W = [w1...wd]. The output neuron computes W · X =

∑d
i=1(wixi).

In case of the perceptron, the forecast is binary, and is delineated by the sign of
the value that is the result of the output layer computation. To help deal with
distribution imbalance, bias can be added.

The prediction of ŷ is the result of the following equation:

ŷ = sign{W ·X + b} = sign{
d∑
i=1

wixi + b}

As seen in the equation, the sign is the activation function Φ(v). Numerous
activation functions can be utilised in artificial neural networks with multiple
hidden layers. For ease of training it is commonly either the Rectified Linear Unit
(ReLU) or Hard Tanh in multilayered networks. The error of the regression can be
indicated as the difference between the real-life test value and the predicted value,
so E(X) = y − ŷ. If the error is not equal to 0 the weights should be amended.
Thus, the purpose of the perceptron is to minimise the least-squares between y
and ŷ, for all data points in dataset D. This objective is dubbed the loss function.∑

(X,y)∈D

(y − sign{W ·X})

The loss function is defined over the whole dataset X, the weights W are updated
with the learning rate α, and the algorithm iterates over the entire dataset until it
converges. This algorithm was named stochastic gradient-descent, also expressed
by:

W ⇐W + αE(X)X

[1]
A multi-layer neural network is created via multiple computational layers,

also named the hidden layers. The title itself hints to the black-box character of
those layers, as the computations are shrouded from the user’s perspective. The
data points are carried from the input layer subsequent layers with computations
at every stage, down to the output layer.

12

The aforementioned procedure is referred to as the feed-forward neural ne-
twork [1]. The exact count of nodes in the foremost computational layer usually
does not reach the count of nodes of the input layer. The particular number of
neurons and the number of hidden layers is in proportion to the intricacy of the
necessary model and, of course, on the data[22]. While in some special cases
utilising a fully-connected layer is the norm, the use of hidden layers with the
count of neurons below that of the inputs grants a loss in representation, which
oftentimes increases the network’s performance. This is very likely as a result of
getting rid of the noise in data [1].

A network built with too many neurons can display unwanted behaviour
known as overfitting. Also named overtraining, this particular phenomenon hap-
pens when the artificial neural network fitted the exact patterns found in the tra-
ining dataset so tightly that it has trouble performing on unforseen data, as the
approximation is not generalised enough. [1]

In parts of this work the influence of the number of hidden layers as well
as the number of neurons in those hidden layers on the ANN performance has
been subjected to scrutiny. While it can be considered as architecture, or network
structure, those aspects could also be considered hyperparameters.

2.5.1. The Usage of Backpropagation

Having to train a single-layer perceptron is quite simple - the loss function
is simply a function of the weights. With multiple layers the procedure gets
messy as it makes many layers of weights influence one another. Backpropagation
calculates the Error Gradient as the sum of local-gradients over multiple paths to
the output node [1]. The algorithm consists of two phases - the forward and the
backward phase. In the forward phase the data points are served to the input
nodes, and one after one the results at consecutive layers are computed with the
current weights. The result of this prediction is compared to the training instance.
The backward phase uncovers the gradient of the loss function for all the weights.
The gradients update the weights, starting from the output layer, stepping back all
the way to the first layer. This weight updating process iterates over the training
data - each iteration is called an epoch - ANN’s can often take thousands of those
iterations to attain convergence.

2.5.2. Improving the selected algorithms with hyperparameter optimization

A most important part of the Artificial Neural Network design comes in the
role of the activation function, as the effect it carries over the achievable results is
straightforward.

One can have diverse types of activation functions. The decision on the type
of an activation function plays a crucial role especially in multi-layer networks,

13

as each layer can have its own non-linear activation function[1]. Each distinctive
function can have a special influence on the results of the ANN, as well as how
the ANN converges, and the comprehensive nature of the network. Out of a wide
range of activation functions Φ(v) four were selected:

– Sigmoid
– Hard Sigmoid
– Rectified Linear Unit (ReLU)
– Hyperbolic Tangent (tanh)

The optimal network setup is found by using a grid search procedure, which
completes an all-encompassing search over the hyperparameter’s space. The grid
search parameters included:

– the epoch count
– the batch size
– the activation function
– the optimiser
– in some tests the number of hidden layers
– in some tests the number of neuron nodes

The full cycle of learning and adapting the weights of the network is called
an epoch. The particular count of samples utilised in one iteration is called batch
size [1]. The grid search can test different activation functions and optimisers.
The optimisers evaluated in this paper are:

– Adaptive Moment Estimation (adam)
– Root Mean Square Propogation (rmsprop)
– Stochastic gradient descent (SGD)

2.5.3. Dimensionality Reduction

The search for a feature vector which communicates the nature of the dataset,
but without having to represent every single feature is named dimensionality
reduction.

It is about the construction of an n-dimensional projection that explains the
data of a k-dimensional space. Computational benefits of this procedure are
the first ones that come to mind, and these are closely followed by preventing
the ’curse of dimensionality’. Said curse makes ML classifiers fall short of the
expected results with the increase of dimensions [48]. Exponential increase of
samples is necessary for the algorithms to be back on track.

A wide range of approaches to dimensionality reduction exist. Since negligi-
ble features are basically just noise, frequently, feature selection is implemented

14

to acquire the most applicable feature set. There are, however, other methods to
arrive at a smaller feature set which explains the data thoroughly.

Another of the go-to methods of dimensionality reduction is Principal Com-
ponent Analysis (PCA). To put it shortly, PCA looks for a view of the data where
the variance is maximised. An example introduced in [48] shows that if the data
creates a line, performing PCA would immediately indicate that the variance over
but one dimensions equals 0. Thus, since the features of those dimensions are
useless, they can be gotten rid of. Even though data-gathering could suggest a
high signal strength in one direction, the data will most likely contain noise in a
lot of features. Provided the signal overpowers the noise to a high enough extent,
the elicited projection containing maximum variance is highly likely to convey the
essence of the data.

2.6. Experimental Setup and Results

2.6.1. Description of chosen datasets

NSL-KDD

NSL-KDD is a data set created to address the problems of the KDD’99 mal-
ware and intrusion data, which were repeatedly raised in the literature. It is now an
established benchmark dataset, even though it still displays some of the unwanted
characteristics. Still, the lack of open IDS datasets and the difficulty in collecting
the data makes NSL-KDD the go-to solution for intrusion detection / malware
detection research.

The set contains almost 5.000.000 records, which makes it both suitable for
machine learning, and not overbearingly humongous so as to force researches to
pick parts of the set randomly. This makes the results more easily comparable.

The NSL-KDD is cleared of redundant data, to prevent ML algorithms bias,
which is an improvement over the original KDD’99 dataset.

Intrusion Detection Evaluation Dataset - CICIDS2017

CICIDS2017 [66] was created as a response to the lack of dependable and
adequately recent cybersecurity datasets. The IDS datasets available to resear-
chers usually come with a set of their own problems - be it lack of traffic diversity,
lack of attack variety, insufficient features and so on. The authors of CICIDS2017
offer a dataset with realistic background traffic, created by abstracting the beha-
viour of 25 users across a range of protocols. The data was captured over a range
of 5 days, with 4 days the setup being assaulted by a range of attacks including
a range of malware, DoS attacks, web attacks and others. This paper utilises the
captures from Tuesday - with FTP-Patator and SSH-Patator attacks. Not only

15

Tablica 1: CICIDS2017 initial results

precision recall f1-score support
0 0.99 1.00 1.00 43171
1 1.00 0.98 0.99 820
2 1.00 0.54 0.70 574

micro avg 0.99 0.99 0.99 44565
macro avg 1.00 0.84 0.89 44565

weighted avg 0.99 0.99 0.99 44565
samples avg 0.99 0.99 0.99 44565

is CICIDS2017 one of the newest datasets available to researchers, but it also
features over 80 network flow features.

2.6.2. Experimental Setup

The experiments were set up on the same 7th generation Intel Core i7-7500U
CPU with two cores of 2.7 and 2.9 GHz and 16GB RAM. The testing environment
was set up using the Keras interface for the TensorFlow library running on Python
3.5. Multiple architecture setups were tested, ranging from 1 hidden layer of 25
neurons, which constitute a half of the count of neurons in the input layer, to a
network of 4 layers 25 neurons each. PCA is then performed to get the number of
features down to 50. The number of extracted features was an arbitrary decision
based on initial tests of the setup. This reduced feature vector constitutes the
feature-set fed to the input layer of the Artificial Neural Network. The pipeline of
the process is illustrated in Fig.1

In a new batch of experiments the algorithm has been applied to the CI-
CIDS2017 dataset. The initial results found in Tab.1 were very encouraging, with
accuracy exceeding 99% (0.9936). The recall of 0.54 and f1-score of 0.70 in one
of the classes signified that there might be a balancing problem in the dataset. A
closer inspection revealed that there are over 43000 records of benign netflows in
the set, but only slightly over 1300 attack records. This is shown in Tab. 1 in the
’Support’ column. To counteract that the majority class was randomly subsampled
with the number of samples matching the sum of attack records. The initial results
for the balanced dataset are represented in Tab.2. The accuracy of the procedure
on the balanced dataset exceeded 97% over the test set, and 95% mean accuracy in
the 10-fold cross-validation. The results with other methods of dataset balancing,
like the one shown in [35] or SMOTE [17] are left for future work.

16

Tablica 2: Balanced CICIDS2017 initial results

precision recall f1-score support
0 0.99 0.96 0.98 1387
1 1.00 1.00 1.00 804
2 0.92 0.99 0.95 576

micro avg 0.98 0.98 0.98 2767
macro avg 0.97 0.98 0.98 2767

weighted avg 0.98 0.98 0.98 2767

NSL-KDD

Dataset

Principal

Component

Analysis

Classification

Artificial

Neural

Network

Rysunek 1: The process pipeline starting with the NSL-KDD dataset. Similar
process is used for CICIDS2017.

2.6.3. Cross-Validation

Machine Learning and numerous facets of Artificial Intelligence come with
their own set of problems. Some of those problems come in the form of selection
bias, or overfitting. If the algorithms experience those challenges they might
perform outstandingly in the lab, but when subjected to real data their performance
will not be satisfactory. In order to mitigate this phenomenon the models undergo
a procedure called k-fold cross validation, also known as rotation estimation. The
training dataset is split into k parts, and k-1 parts are used for training, with the
remaining one is utilized for testing. Then the procedure is repeated k times
changing the testing part. The folds are sampled randomly [34] [32]. In this
work 10-fold cross-validation was used.

2.6.4. Comparison to other state of the art machine learning algorithms

In this section the performance of other ML approaches is presented. To place
the performance of the illustrated approach in context, tests were performed using
a Support Vector Machine with gaussian kernel(SVM), the Naïve Bayes classifier
and ADABoost. Table 4 illustrates the differences among the results the classifiers
have achieved with the use of CICIDS2017 data.

17

Tablica 3: 1 layer 10 neurons over the NSL-KDD dataset

Accuracy Optimizer Epochs Activation Batch Size
0.998915 adam 300 sigmoid 10
0.998516 rmsprop 300 relu 10
0.998761 adam 300 relu 10
0.997432 SGD 300 relu 10
0.998775 rmsprop 300 relu 100
0.998881 adam 300 relu 100
0.995214 SGD 300 relu 100
0.998450 rmsprop 300 sigmoid 10
0.998915 adam 300 sigmoid 10
0.995691 SGD 300 sigmoid 10
0.998709 rmsprop 300 sigmoid 100
0.998717 adam 300 sigmoid 100
0.990996 SGD 300 sigmoid 100
0.998562 rmsprop 300 tanh 10
0.998829 adam 300 tanh 10
0.996776 SGD 300 tanh 10
0.998765 rmsprop 300 tanh 100
0.998771 adam 300 tanh 100
0.994085 SGD 300 tanh 100
0.998522 rmsprop 300 hard_sigmoid 10
0.998833 adam 300 hard_sigmoid 10
0.995639 SGD 300 hard_sigmoid 10
0.998683 rmsprop 300 hard_sigmoid 100
0.998845 adam 300 hard_sigmoid 100
0.991385 SGD 300 hard_sigmoid 100

18

Tablica 4: The results of other ML methods over the CICIDS2017 dataset

precision recall f1-score support
SVM , Accuracy: 0.9584

0 1.00 0.92 0.96 1387
1 0.97 1.00 0.98 804
2 0.87 0.99 0.93 576

micro avg 0.96 0.96 0.96 2767
macro avg 0.95 0.97 0.96 2767

weighted avg 0.96 0.96 0.96 2767
Naive Bayes , Accuracy: 0.9078

0 1.00 0.82 0.90 1387
1 0.86 1.00 0.93 804
2 0.82 1.00 0.90 576

micro avg 0.91 0.91 0.91 2767
macro avg 0.89 0.94 0.91 2767

weighted avg 0.92 0.91 0.91 2767
ADABoost , Accuracy: 0.9382

0 1.00 0.88 0.93 1387
1 1.00 1.00 1.00 804
2 0.78 0.99 0.87 576

micro avg 0.94 0.94 0.94 2767
macro avg 0.92 0.96 0.93 2767

weighted avg 0.95 0.94 0.94 2767

19

Tablica 5: 4 hidden layers, 25 neurons each, CICIDS2017 dataset

Accuracy Activation Batch Size Optimizer Epochs
0.975176 relu 50 adam 30
0.976983 relu 50 rmsprop 30
0.970597 relu 50 SGD 30
0.974252 relu 100 adam 30
0.976742 relu 100 rmsprop 30
0.958184 relu 100 SGD 30
0.970516 sigmoid 50 adam 30
0.969793 sigmoid 50 rmsprop 30
0.930227 sigmoid 50 SGD 30
0.969110 sigmoid 100 adam 30
0.965575 sigmoid 100 rmsprop 30
0.585017 sigmoid 100 SGD 30
0.972444 hard_sigmoid 50 adam 30
0.973408 hard_sigmoid 50 rmsprop 30
0.708456 hard_sigmoid 50 SGD 30
0.971922 hard_sigmoid 100 adam 30
0.972645 hard_sigmoid 100 rmsprop 30
0.499819 hard_sigmoid 100 SGD 30

2.7. Results

Hyperparamater optimisation is performed on each of the setups. The grid-
search method evaluates each of possible permutations of the selected hyperpa-
rameters. Namely, the used epochs count, the batch size, the optimiser and the
activation function are consecutively permutated in order to achieve the highest
accuracy. The tables below illustrate the way the accuracy fluctuates on various
ANN setups. The optimal setup for the algorithm in the CICIDS2017 case has
been established with the gridsearch procedure as well. A sample of the results
can bee seen at Tab. 5. It is apparent that the results acquired with different
parameter setups vary greatly, just as it was in the NSL-KDD case.

2.8. Machine Learning Approach Enhanced with Data Balancer

The focus of this research lies on the impact the balance of the instance num-
bers among classes in a dataset has on the performance of ML-based classification
methods. In general, the step-by-step process of ML-based Intrusion Detection
System (IDS) can be succinctly summarised as follows: a batch of annotated data

20

Rysunek 2: IDS training pipeline with dataset balancing

is used to train a classifier. The algorithm ’fits’ to the training data, creating a
model. This is followed by testing the performance of the acquired model on the
testing set - a batch of unforeseen data. In order to alleviate the data balancing
problem present in the utilised IDS dataset an additional step is undertaken before
the algorithm is trained (as seen in Fig. 2).

The ML-based classifier block of Fig. 2 can be realised by an abundance of
different machine learning methods. In fact, recent research showcases numerous
novel approaches including deep learning [53][54], ensemble learning [83][38],
various augmentations to classical ML algorithms [39] etc. In this work three
basic models were chosen to put emphasis on the data balancing part. These are:

– Artificial Neural Network [68][70]
– Random Forest [8]
– Naive Bayes [48]

These represent three significantly different approaches to machine learning and
were selected to cover possibly the widest range of effects dataset balancing could
have on the effectiveness of ML.

2.9. Balancing Methods

In the cases suffering from the data imbalance problem the number of training
samples belonging to some classes is larger in contrast to other classes.

The conundrum of data imbalance has recently been deeply studied in the
area of machine learning and data mining. In numerous cases, this predicament
impacts the machine learning algorithms and in result deteriorates the effective-
ness of the classifier [36]. Typically in such cases, classifiers will achieve higher
predictive accuracy over the majority class, but poorer predictive accuracy over
the minority class. In general, solutions to this problem can be categorised as (i)
data-related, and (ii) algorithm-related.

21

Ta
bl

ic
a

6:
C

IC
ID

S2
01

7
(p

eł
en

zb
ió

r)
/N

ie
zb

al
an

so
w

an
y

A
N

N
R

an
do

m
Fo

re
st

N
aï

ve
B

ay
es

A
C

C
:0

.9
83

3
A

C
C

:0
.9

98
7

A
C

C
:0

.2
90

5
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
su

pp
or

t
0

0.
99

0.
99

0.
99

1.
00

1.
00

1.
00

1.
00

0.
10

0.
18

16
21

54
1

0.
97

0.
35

0.
52

0.
88

0.
68

0.
77

0.
01

0.
65

0.
01

19
6

2
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

94
0.

95
0.

94
12

80
3

3
0.

99
0.

97
0.

98
1.

00
0.

99
1.

00
0.

09
0.

93
0.

16
10

29
4

0.
95

0.
94

0.
94

1.
00

1.
00

1.
00

0.
74

0.
70

0.
72

23
01

2
5

0.
89

0.
98

0.
93

0.
96

0.
98

0.
97

0.
00

0.
67

0.
01

55
0

6
0.

99
0.

98
0.

99
1.

00
0.

99
0.

99
0.

05
0.

52
0.

09
58

0
7

0.
99

0.
98

0.
99

1.
00

1.
00

1.
00

0.
10

0.
99

0.
18

79
4

8
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1

9
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

99
0.

99
0.

99
15

88
0

10
1.

00
0.

49
0.

66
1.

00
1.

00
1.

00
0.

08
0.

99
0.

15
59

0
11

0.
85

0.
10

0.
17

0.
86

0.
99

0.
92

0.
00

0.
07

0.
00

30
1

12
0.

00
0.

00
0.

00
1.

00
1.

00
1.

00
0.

01
1.

00
0.

02
4

13
1.

00
0.

02
0.

05
0.

95
0.

61
0.

74
0.

08
0.

93
0.

14
13

0
m

ac
ro

av
g

0.
90

0.
70

0.
73

0.
97

0.
95

0.
96

0.
36

0.
75

0.
33

21
80

24
w

ei
gh

te
d

av
g

0.
98

0.
98

0.
98

1.
00

1.
00

1.
00

0.
95

0.
29

0.
34

21
80

24

22

Ta
bl

ic
a

7:
C

IC
ID

S2
01

7
/R

an
do

m
Su

bs
am

pl
in

g

A
N

N
R

an
do

m
Fo

re
st

N
aï

ve
B

ay
es

A
C

C
:0

.9
81

2
A

C
C

:
0.

99
80

A
C

C
:0

.2
91

1
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
pr

ec
is

io
n

re
ca

ll
f1

-s
co

re
su

pp
or

t
0

1.
00

0.
98

0.
99

1.
00

1.
00

1.
00

1.
00

0.
10

0.
18

16
21

54
1

0.
50

0.
63

0.
56

0.
91

0.
92

0.
91

0.
01

0.
65

0.
01

19
6

2
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

94
0.

95
0.

94
12

80
3

3
0.

98
0.

98
0.

98
1.

00
1.

00
1.

00
0.

09
0.

93
0.

16
10

29
4

0.
90

0.
99

0.
95

1.
00

1.
00

1.
00

0.
74

0.
70

0.
72

23
01

2
5

0.
90

0.
99

0.
94

0.
98

0.
99

0.
99

0.
00

0.
67

0.
01

55
0

6
0.

97
0.

98
0.

97
0.

99
0.

99
0.

99
0.

05
0.

52
0.

09
58

0
7

0.
99

0.
98

0.
98

1.
00

1.
00

1.
00

0.
10

0.
99

0.
19

79
4

8
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1

9
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

99
0.

99
0.

99
15

88
0

10
0.

97
0.

49
0.

65
1.

00
0.

99
1.

00
0.

08
0.

99
0.

15
59

0
11

0.
59

0.
23

0.
33

0.
80

0.
97

0.
88

0.
00

0.
07

0.
00

30
1

12
0.

00
0.

00
0.

00
1.

00
0.

80
0.

89
0.

01
1.

00
0.

02
4

13
0.

80
0.

03
0.

06
0.

96
0.

40
0.

57
0.

08
0.

93
0.

15
13

0
m

ac
ro

av
g

0.
83

0.
73

0.
74

0.
97

0.
93

0.
94

0.
36

0.
75

0.
33

21
80

24
w

ei
gh

te
d

av
g

0.
99

0.
98

0.
98

1.
00

1.
00

1.
00

0.
95

0.
29

0.
34

21
80

24

23

(a) Original Distribution (b) After SMOTE

Rysunek 1: Class distribution in CICIDS 2017 - Original unbalanced distribution
and after SMOTE

(a) BENIGN class randomly subsampled (b) NearMiss

Rysunek 2: Class distribution in CICIDS 2017 - After performing random under-
sampling and NearMiss

In the following paragraphs, these two categories of balancing methods
will be briefly introduced. The focus of the analysis was on the practical
cybersecurity-related application that faces the data imbalance problem.

2.9.1. Data-related Balancing Methods

Two techniques, belonging to this category, that are commonly used to cope
with imbalanced data use the principle of acquiring a new dataset out of the
existing one. This is realised with data sampling approaches. There are two
widely recognised approaches called data over-sampling and under-sampling.

A number of dataset balancing approaches was put to evaluation, among
them random subsampling, eliminating tomek links, near-miss, clustering and
Borderline synthetic minority oversampling technique (Borderline SMOTE).

24

(a) After cleaning the Tomek-links (b) Cluster-Centers undersampling

Rysunek 3: Class distribution in CICIDS 2017 - After cleaning the Tomek-Links
and performing ClusterCenters undersampling

2.9.2. Algorithm-related Balancing Methods

Utilizing unsuitable evaluation metrics for the classifier trained with the im-
balanced data can lead to wrong conclusions about the classifier’s effectiveness.
As the majority of machine learning algorithms do not operate very well with im-
balanced datasets, the commonly observed scenario would be the classifier totally
ignoring the minority class. This happens because the classifier is not sufficiently
penalized for the misclassification of the data samples belonging to the minority
class. This is why the algorithm-related methods have been introduced as a part of
the modification to the training procedures. One technique is to use other perfor-
mance metrics. The alternative evaluation metrics that are suitable for imbalanced
data are:

– precission - indicating the percentage of relevant data samples that have been
collected by the classifier

– recall (or sensitivity)- indicating the total percentage of all relevant instances
that have been detected.

– f1-score - computed as the harmonic mean of precision and recall.

Another technique that is successfully used in the field is a cost-sensitive clas-
sification. Recently this learning procedure has been reported to be an effective
solution to class-imbalance in the large-scale settings. Without losing the genera-
lity, let us define the cost-sensitive training process as the following optimisation
formula:

θ̂ = min
θ

{
1

2
||θ||2 +

1

2

N∑
i=1

Ci||ei||2
}

(1)

25

where θ indicates the classifier parameters, ei the error in the classifier response
for the i-th (out ofN) data samples, andCi the importance of the i-th data sample.

In cost-sensitive learning, the idea is to give a higher importance Ci to the mi-
nority class, so that the bias towards the majority class is reduced. In other words,
we are producing a cost function that is penalizing the incorrect classification of
the minority class more than incorrect classifications of the majority class.

In this paper we have focused on Cost-Sensitise Random Forest as an exam-
ple of cost-sensitive meta-learning. This is mainly due to the fact the Random
Forest classifier in that configuration yields the most promising results. These can
be found in Tab. 10

2.9.3. Results and Perspectives

CICIDS 2017 dataset consists of 13 classes - 12 attacks and 1 benign class. As
depicted in Fig. 1, there is a wide discrepancy among the classes in terms of the
number of instances, especially the benign class as compared to the attack classes.

During the tests the initial hypothesis was that balancing the classes would
improve the overall results. Random Subsampling (Tab. 7) along a slew of other
subsampling methods were used to observe the influence dataset balancing has
on the performance of 3 reference ML algorithms - an Artificial Neural Network
(ANN), a RandomForest algorithm and a Naive Bayes classifier. Finally, Border-
line SMOTE was conducted as a reference oversampling method. Balancing the
benign class to match the number of samples of all the attacks combined chan-
ged both the precision and the recall achieved by the algorithm. It also became
apparent that none of the subsampling approaches outperformed simple random
subsampling in the case of CICIDS2017. The tests revealed an interesting connec-
tion among the precision, recall and the imbalance ratio of the dataset. Essentially,
there seems to exist a tradeoff between precision and recall that can be controlled
by the number of the instances of classes in the training dataset. To evaluate that
assertion further tests were conducted. Random Forest algorithm was trained on
the Unbalanced dataset and then all the classess were subsampled to match the
number of samples in one of the minority classes.

The tests proved that changing the balance ratio undersampling the majority
classes improves the recall of the minority classes, but degrades the precission of
the classifier on those classes. This basically means that dataset balancing causes
the ML algorithms to misclassify the (previously) majority classes as instances of
the minority classes, thus boosting the false positives.

Finally, a cost-sensitive random forest algorithm was tested. After trying diffe-
rent weight setups results exceeding any previous undersampling or oversampling
methods were attained (Tab. 10). It is noteworthy that the achieved recall for
class 13 is higher while still retaining a relatively high precision. A relationship

26

Tablica 8: CICIDS2017 / Random Subsampling down to 7141 instances per class
/ RandomForest

precision recall f1-score support
0 1.00 0.98 0.99 162154
1 0.13 0.99 0.23 196
2 1.00 1.00 1.00 12803
3 0.92 1.00 0.96 1029
4 0.98 1.00 0.99 23012
5 0.85 0.99 0.92 550
6 0.93 0.99 0.96 580
7 0.93 1.00 0.96 794
8 0.17 1.00 0.29 1
9 1.00 1.00 1.00 15880

10 0.73 1.00 0.85 590
11 0.63 0.98 0.77 301
12 0.07 1.00 0.14 4
13 0.32 0.48 0.39 130

accuracy 0.9872 218024
macro avg 0.69 0.96 0.74 218024

weighted avg 0.99 0.99 0.99 218024

27

Tablica 9: CICIDS2017 / Random Subsampling down to 1174 instances per class
/ RandomForest

precision recall f1-score support
0 1.00 0.96 0.98 162154
1 0.07 1.00 0.13 196
2 0.99 1.00 1.00 12803
3 0.69 1.00 0.82 1029
4 0.94 0.99 0.97 23012
5 0.76 0.99 0.86 550
6 0.86 0.99 0.92 580
7 0.81 1.00 0.89 794
8 0.17 1.00 0.29 1
9 1.00 1.00 1.00 15880

10 0.44 1.00 0.61 590
11 0.23 0.65 0.34 301
12 0.07 1.00 0.13 4
13 0.13 0.95 0.23 130

accuracy 0.9657 218024
macro avg 0.58 0.97 0.65 218024

weighted avg 0.99 0.97 0.97 218024

28

Tablica 10: CICIDS2017 / Cost-Sensitive RandomForest

precision recall f1-score support
0 1.00 1.00 1.00 162154
1 0.34 0.91 0.50 196
2 1.00 1.00 1.00 12803
3 1.00 0.99 0.99 1029
4 1.00 1.00 1.00 23012
5 0.97 0.98 0.97 550
6 1.00 0.99 0.99 580
7 1.00 1.00 1.00 794
8 1.00 1.00 1.00 1
9 1.00 1.00 1.00 15880

10 1.00 1.00 1.00 590
11 0.98 0.85 0.91 301
12 1.00 1.00 1.00 4
13 0.72 0.96 0.83 130

accuracy 0.9973 218024
macro avg 0.93 0.98 0.94 218024

weighted avg 1.00 1.00 1.00 218024

between class 11 and class 13 was also discovered, where setting a higher we-
ight for class 13 would result in misclassification of class 11 samples as class 13
samples and the other way round.

2.10. Gated Recurrent Unit in Network Intrusion Detection

To the best of our knowledge, the Gated Recurrent Unit has not been tho-
roughly researched for intrusion detection since its inception in 2014 [19]. [41]
Evaluates the way Principal Component Analysis improves the results of GRU for
Intrusion Detection Systems, achieving, as the authors report, remarkable results.

The use of Variant Gated Recurrent Units (E-GRU) is evaluated in [29] as a
preprocessing step in payload aware IDS. The authors notice an improvement over
the state-of-the-art methods on a benchmark dataset - ISCX2012. The achieved
accuracy reaches 99.9%, however, the memory usage of E-GRU turns out to be
32 times the memory usage of a standard GRU.

The authors of [79] improve the performance of IDS by utilising a Deep
Network model with automatic feature extraction. The GRU is used as a feature
extractor, which feeds the outputs to a Multi Layer Perceptron (MLP), which then
uses a softmax to come up with the final classification. The experiments were

29

performed on KDD99 and NSL-KDD datasets, achieving 99.98% for KDD99 and
99.55% accuracy for NSL-KDD.

2.11. Recurrent Neural Networks

The usual architectures of neural networks lack the ability to recognise sequ-
ential dependencies among data. This makes them underperform on data types
that progressively build on previous instances, like time-series data, or text. [9] A
different architecture is necessary to handle this kind of data. The answer to this
challenge is the Recurrent Neural Network (RNN) - an architecture that features
feedback loops. The RNN is capable of learning without relying on the Markov
assumption, the premise that, given a present state, all the following states do not
depend on the past states [69]. The output from the recent time index T is applied
as one of the outputs to time index T+1, or back to itself [26]

Because of this propagation of weights through time the RNN faces its own
kind of problem. The mentioned weights are multiplied recursively, thus, if the
weights are too small, the subsequent values will be progressively getting smaller
and smaller, or, should the weights be sizeable, the final values will approach
infinity. This challenge is referred to as the Vanishing Gradient- or the Exploding
Gradient problem, respectively [26]

2.11.1. Long Short-Term Memory and GRU

The vanishing/exploding gradient problem arises whenever the matrices are
multiplied repeatedly, destabilising the result. This occurs whenever the RNN is
dealing with a long enough sequence. For short sequences the RNN never even
experiences the problem. Thus, one could stipulate that an RNN has a reasonable
short-term memory, but underperforms when long term memory is necessary. To
address this problem, the Long Short-Term Memory network was introduced. It
uses a property called ’cell state’ to retain portions of its long-term memory.

The Gated Recurrent Unit (GRU) [19], can be seen as a simplification of
the LSTM architecture, following the same basic principle, but not completely
mapping one another. The GRU uses a ’reset gate’ to partially reset the hidden
states of the network [9]. The models attained with the use of a GRU usually
have lesser complexity than those of LSTM [26]. The GRU is more efficient than
LSTM [9].

The results are encouraging but clearly, need further research. The architecture
we have evaluated achieved a weighted average of 97% across the board, getting
up to 100% recognition of some of the attack classes.

On the other hand, some of the attacks were herded with the other classes.
These are, as expected, the underrepresented classes, like ’1’, ’3’ and ’4’. Since

30

Tablica 11: Random Subsampling-Balanced CICIDS2017, GRU feature extractor,
RandomForest classifier accuracy: 0.9918

precision recall f1-score support
BENIGN 0.99 0.99 0.99 166922

Bot 0.82 0.87 0.84 558
DDoS 0.99 0.99 0.99 38433

DoS GoldenEye 0.87 0.95 0.91 2843
DoS Hulk 0.99 0.99 0.99 69356

DoS Slowhttptest 0.98 0.97 0.98 1666
DoS slowloris 0.98 0.99 0.99 1725

FTP-Patator 1.00 1.00 1.00 2377
Heartbleed 0.67 1.00 0.80 2

PortScan 1.00 1.00 1.00 47633
SSH-Patator 0.98 0.98 0.98 1767
Brute Force 0.67 0.63 0.65 480

Sql Injection 0.00 0.00 0.00 0
XSS 0.29 0.38 0.33 150

macro avg 0.80 0.84 0.82 333912
weighted avg 0.99 0.99 0.99 333912

the test dataset was randomly sampled at the time of the train/test split, not all of
the attack types made it into the evaluation.

2.12. Using Gated Recurrent Units for feature extraction

In a final batch of experiments all the preceding improvement methods come
together to form a new approach to IDS. Taking the results of previous experi-
ments, the GRU is used as a feature extractor, the dataset is ballanced - either with
random subsampling, or through cost-sensitive learning, the influence of PCA is
tested and finally, RandomForest is used for classification.

31

Tablica 12: Random Subsampling-Balanced CICIDS2017, GRU feature extractor,
PCA before classifier, RandomForest classifier , accuracy: 0.9927

precision recall f1-score support
BENIGN 0.99 0.99 0.99 166944

Bot 0.84 0.87 0.86 569
DDoS 0.99 0.99 0.99 38426

DoS GoldenEye 0.89 0.95 0.92 2903
DoS Hulk 0.99 0.99 0.99 69249

DoS Slowhttptest 0.99 0.97 0.98 1676
DoS slowloris 0.98 0.99 0.98 1723

FTP-Patator 1.00 1.00 1.00 2378
Heartbleed 1.00 1.00 1.00 3

PortScan 1.00 1.00 1.00 47630
SSH-Patator 0.98 0.98 0.98 1778
Brute Force 0.66 0.63 0.64 476

Sql Injection 0.00 0.00 0.00 2
XSS 0.24 0.31 0.27 155

macro avg 0.83 0.83 0.83 333912
weighted avg 0.99 0.99 0.99 333912

Tablica 13: Random Subsampling-Balanced CICIDS2017, GRU feature extractor,
cost-sensitive RandomForest classifier , accuracy: 0.9903

precision recall f1-score support
BENIGN 0.99 0.99 0.99 435436

Bot 0.80 0.76 0.78 618
DDoS 0.97 0.97 0.97 38612

DoS GoldenEye 0.79 0.91 0.85 2681
DoS Hulk 0.99 0.99 0.99 69278

DoS Slowhttptest 0.96 0.90 0.93 1758
DoS slowloris 0.93 0.99 0.96 1637

FTP-Patator 0.99 0.99 0.99 2389
Heartbleed 0.67 1.00 0.80 2

PortScan 1.00 1.00 1.00 47636
SSH-Patator 0.98 1.00 0.99 1743
Brute Force 0.73 0.30 0.43 1088

Sql Injection 0.00 0.00 0.00 0
XSS 0.11 0.17 0.13 122

macro avg 0.78 0.78 0.77 603000
weighted avg 0.99 0.99 0.99 603000

32

3. Part two: Adversarial Attack Detection

3.1. Introduction

Recent advances in machine learning (ML) and the surge in computational
power have opened the way to the proliferation of Artificial Intelligence (AI) in
all walks of life. The insights inferred from gathered data with the use of ML
techniques have radically transformed, for example, the fields of health care and
finance, along with uses in security systems [55].

Machine Learning has the uncanny ability to gather the interdependencies
among features in large datasets. A range of methods emerged, like the Support
Vector Machines (SVM), Clustering, Neural Networks, etc. The ML procedure
usually follows the same outline - one where a training phase is followed by a
deployment phase, where classification or regression is performed.

The training phase is where the algorithm ’fits’ a model to the provided data
- usually a large set. ML often achieves surprisingly accurate results in a wide
range of applications [3].

With the real-world applications of AI came the realization that its security
requires immediate attention. Malicious users, called ’Adversaries’ in the AI
world, can skillfully influence the inputs fed to the AI algorithms in a way that
changes the classification or regression results [15]. Regardless of the machine
learning’s ubiquity, the awareness of the security threats and ML susceptibility to
adversarial attacks is fairly uncommon [55]. Currently, numerous vulnerabilities
have been exposed by researchers, most notably speech recognition, autonomous
vehicles, and overall deep learning [15].

The research on securing machine learning is ongoing, with a range of diffe-
rent approaches found in recent literature. The puzzle of a truly immune system,
however, still remains unsolved. The solutions already developed are yet to be
proven in real-life applications as well [45]. The existing fixes introduced contem-
porary research include approaches like training the algorithms with the inclusion
of perturbed examples, concepts like distillation or using a Generative Adversarial
Network. They are reported to work for particular types of attacks, though they
do not provide security against all types of strikes. Those solutions can also lead
to underperforming ML solutions [15].

33

3.2. Overview of adversarial attacks

Concisely put, exploratory attacks are a way to form a functional equivalent
of a deployed ML algorithm, to extract the decision boundary, the setup of the
algorithm, its properties and the information about the training dataset [82].

The danger an adversary poses is determined by the information available to
it. The level of access the malevolent user has determined the range of attacks
they can employ. This is referenced to as Adversarial Capabilities [55, 15]. The
level of acquaintance the adversary possesses of the machine learning algorithm
architecture influences their behaviour. That level can be broadly categorized as
white- and black box.

Black box attacks are undertaken with no prior familiarity with the model or
any of its parts. This can be performed by carefully providing and observing the
input/output pairs of the algorithm under attack, due to the transferability among
many ML algorithms [55]. In a black-box attack, the adversary initiates the assault
on an ML classifier without knowledge of the training data. To initiate a black-box
attack the agent sends a set of samples to the algorithm and receives the output
labels. Then, using the input-output pairs a deep learning (based on a multi-layer
neural network) classifier is trained, building a functional copy of the original
classifier.

The deep neural network is chosen for its astonishing modeling capacity in
pattern recognition. It displays a strong ability to fit the data [22]. Moreover, [82]
illustrates that a deep neural network can be used to build a functionally equivalent
classifier to a Naive Bayes or an SVM classifier. In addition to that, [67] illustrates
how to use a deep neural network to steal a real-life classifier through polling its
API (Application Programming Interface) with the use of a free license allowance
and a dataset scraped off the internet. The thing of importance in case of black-box
attacks is that the adversarial objective is to train a local version of a classifier [15].

On the other hand, the white-box case can be evaluated from a number of
angles. The architecture of the model can vary significantly with a myriad of
hyper-parameter setups. The knowledge of the specific values can be used to
find vulnerabilities which can then be abused by the attacker. A well-informed
antagonist can alter the input data to steer the algorithm into spaces where its
performance is weak. [55] In a white-box attack, the adversary is assumed to
have total knowledge of the inner workings of an ML algorithm, that means the
type of ML used, parameters like the number of hidden layers or the number of
neurons, as well as the hyper-parameter setups, like the optimizer. The parameters
of a deployed model are also assumed to be revealed to him. This knowledge is
then used to find the areas where the classifier is open to attack. The knowledge
of model weights can be translated into an immensely powerful attack [15].

34

Model Extraction or model stealing disregards the confidentiality of ML, al-
lowing the adversary to create a ’surrogate model’ for the attacked ML algorithm
[61].

3.3. Experiments

The aim of this section is to evaluate if it is possible to steal a classifier in the
cybersecurity domain by probing an established ML algorithm with a batch of data
and training a deep neural network (DNN) on the observed responses. This kind
of attack could be a first step to launching more sophisticated adversarial attacks,
like poisoning attacks or evasion attacks. Having a local version of a classifier is,
therefore, a valuable commodity for a malevolent user. It is important to mention
that this work is preliminary research and at this stage, the stolen algorithm is
not a live, operational system, but an artificial neural network trained on one of
the benchmark cybersecurity datasets. The details of the setup are disclosed in a
later section. To make the experiment as real-life as possible under the current
circumstances, a set of assumptions was made.

– In a real-life cybersecurity situation, the only observable response would be
the restriction of access for an agent displaying a given set of behaviours. This
is in a way similar to the oracle attack known from cryptography [10]. There-
fore the extracted model will only be able to perform binary classification.

– To make it possible to compare the extracted model with the original algorithm
will be a binary classifier as well, only making the distinction between normal
and anomalous traffic.

– As the research progresses, attempts will be made to steal a classifier in a
completely black-box manner, at this stage however some initial knowledge
of the algorithm is assumed. More precisely, the work has been conducted
using the NSL-KDD dataset.

3.3.1. Original Classifier

The original classifier was a multi-layer artificial neural network (ANN) tra-
ined on the NSL-KDD [73] dataset.

A multi-layer ANN refers to a network with multiple computational layers,
known as the hidden layers. The computations in those layers are not perceivable
from the users’ point of view. The data are fed forward from the input layer
throughout the consecutive layers until they reach the output layer.

35

3.3.2. Model Extraction

We have used a multilayer perceptron as the model extraction architecture,
with 4 hidden layers of 512 neurons each and the Rectified Linear Unit activation
function. This is motivated by the fact that a deep learning classifier achieved
superior results for model extraction of an SVM and a Naive Bayes classifier
in [82]. As depicted in [82], the model extraction algorithm procedure can be
summarised as follows:

Stealing an algorithm:
1. polling the classifier with input data
2. observing the labels returned by the classifier
3. using input/label data to train a deep learning classifier and optimize its hy-

perparameters

The pipeline of the process is also depicted in Fig. 2.

3.3.3. Experimental Process

To properly test the feasibility of an algorithm trained on the labels inferred
from another algorithm we have prepared the experiment as follows:

Firstly, the dataset was transformed into a binary classification problem. To
achieve this the classes contained in the set were converted to ’attack’ or ’benign’
respectively. The dataset contains 58628 ’attack’ records and 67342 ’benign’
records, that constitutes roughly 46.5% attacks and 53,5% benign datapoints.

Secondly, the binary NSL-KDD dataset was split into three parts:

– Set A - used to train the original algorithm
– Set B - used to poll the original classifier and receive classification labels, and

then to train the new DNN Classifier
– Set C - used to test the DNN and compare the results with the original classifier

(fig.14 and fig.15)

Thirdly, the original algorithm is polled with the features from Set B, the responses
are recorded, paired with their respective polls and formed into a new dataset. This
new dataset is then utilised to train a DNN.

Finally, we use the remainder of the dataset (Set C) to test the DNN and also
feed it to the original classifier to compare the results.

Deep Neural Network architecture
According to [1], a shallow neural network of one layer and sufficient number

of neurons has, in theory, the ability to fit to any function. The same source
suggests going for depth is also a viable alternative (although not without its
own problems). Following in the footsteps of [82], where authors show they are

36

Tablica 14: Original Classifier’s confusion matrix on subset C

benign attack
benign 20125 78
attack 76 17512

Tablica 15: Extracted Classifier’s confusion matrix on subset C

benign attack
benign 20108 95
attack 120 17468

capable of stealing a Naive Bayes and an SVM classifier using a DNN, the authors
have used a network of 4 dense layers, 512 neurons each and a Rectified Linear
Unit activation function. The architecture was chosen so as to be more complex
than the original classifier, taking an educated guess based on the typical number
of features in cybersecurity datasets.

Recently it has come to attention that skilfully crafted inputs can affect artifi-
cial intelligence algorithms to sway the classification results in the fashion tailored
to the adversary needs [16]. This new disturbance in the proliferation of Machine
Learning has not yet been extensively researched, and thus the awareness of the
challenge is adequately infrequent. At the time of writing this paper a variety of
vulnerabilities have been uncovered [16].

With the recent spike of interest in the field of securing ML algorithms, a
myriad of different attack and defence methods have been discovered; no truly
safe system has been developed however, and no genuinely field-proven solutions
exist [46].

The solutions known at this point seem to work for certain kinds of attacks, but
do not assure safety against all kinds of adversarial attacks. In certain situations,
implementing those solutions could lead to the deterioration of ML performance
[16].

There are a couple of known poisoning attacks featured in the literature. In
[5] a method utilising the intrinsic properties of Support Vector Machines is in-
troduced. The overarching idea is that an adversary can craft a data point that
significantly deteriorates the performance of the classifier. The formulation of
that data point can be, as demonstrated by the authors, defined as the solution of
an optimisation problem with regard to a performance measure. Thus, gradient
ascent is used to identify local maxima of the error surface. The paper introduces
a model that analyses label flipping attacks on support vector machines (SVM) in
binary classification, which they call adversarial label noise. In their paper, the

37

authors evaluate two major attack strategies - random label flips and adversarial
label flips. Random flips are simply accidental noise, which influences a given
percentage of data. The second instance features an adversary seeking the ma-
ximisation of classification error on testing data. The testing data has not been
tampered with. The authors note that the challenge of finding the worst possible
mix of label flips is not a straightforward one. The labels that are flipped the
earliest are the ones that carry non-uniform probabilities according to the SVM
trained on the clear dataset. The classes chosen for the flips are the ones clas-
sified with a high confidence, this should result in a significant impact on SVM
accuracy[5].

In [65] the authors investigate a poisoning attack geared towards targeting spe-
cific test instances with the ability to fool a labelling authority, which they name
’clean-label’ attacks. Their work does not assume knowledge of the training data,
but does require the knowledge of the model. It is an optimisation-based attack
for both the transfer-learning and end-to-end DNN training cases. The overall
procedure of the attacks, called ’Poison Frogs’ by the authors, is as follows: the
basic version of this attack starts with choosing the target datapoint, then making
alterations to that datapoint to make it seem like it belongs to the base class. A
poison crafted that way is then inserted into the dataset. The objective is met if
the target datapoint is classified as the base class at test time. Arriving at a poiso-
nous datapoint to be inserted into the training set comes as a result of a process
called ’feature collision’. It is a process that exploits the nonlinear complexity of
the function propagating the input through the second-to-last layer of the neural
network to find a datapoint which ’collides’ with the target datapoint, but is also
close to the base class in the feature space. This allows the poisoned datapoint to
bypass the scrutiny of any labelling authority, and also remain in the target class
distribution. The optimisation is performed with a forward-backward-splitting
iterative procedure.

A targeted backdoor attack is proposed in [18]. The premise of the method is
to create a backdoor to an authentication system based on artificial intelligence,
allowing the adversary to pass the authentication process by deceiving it. The
poisoning datapoints are created specifically to force an algorithm to classify
a specific instance as a label of the attacker’s choice. The authors propose a
method that works with relatively small poison samples and with the adversary
possessing no knowledge of the algorithm utilised. This claim is backed up by a
demonstration of how inserting just 50 samples gets a 90% success rate.

Intrusion Detection and the ability to detect attacks is a crucial aspect to ensure
cybersecurity. However, what if IDS (Intrusion Detection System) is attacked; in
other words what defends the defender? In this work, we focus on countering
attacks on machine learning-based cyberattack detectors. In principle, we pro-
pose the adversarial machine learning detection solution. Indeed, contemporary

38

machine learning algorithms have not been designed bearing in mind the adver-
sary nature of the environments they are deployed in. Thus, Machine Learning
solutions are currently a target of a range of attacks. This paper evaluates the po-
ssibility of deteriorating the performance of a well-optimised intrusion detection
algorithm at test time by crafting adversarial attacks with the four of the recently
proposed methods and then offers a way to detect those attacks. To the best of our
knowledge, detecting adversarial attacks on artificial neural network has not yet
been widely researched in the context of intrusion detection systems.

3.3.4. Adversarial Machine Learning and Attack Generation

Over the last few years, the research into the curious properties of ML has
exploded. The fact that skilfully crafted feature vector can fool even the classifiers
that exceed human performance on a benchmark dataset has riveted the attention
of the AI scientific community. With the awareness of the issue rising, a range
of soft spots has been found [15]. Adversarial examples are samples that for all
intents and purposes look almost identical to correctly classifiable data; however
with a small, intentional, worst-case perturbation that can cause a range of ML
algorithms, most notably artificial neural networks, to fail [72].

Fast Gradient Sign Method
The authors of [25] found a rapid approach to dependably produce adversarial

examples that lead an array of ML methods to misclassify. The method was ini-
tially demonstrated on ImageNet, MNIST [42] and CIFAR-10 [37] datasets. It re-
lies on finding a small adversarial noise vector that when summed up corresponds
with the sign of the elements of the gradient of the cost function for the evaluated
sample. The Fast Gradient Sign Method can be defined as the linearization of
the cost function around the current value of Θ, obtaining an optimal max-norm
constrained perturbation of

η = εsign(∇xJ(Θ, x, y))

Where Θ stands for the parameters of the model, x for the inputs to the model,
y for the targets of the corresponding x and J(Θ, x, y) is the cost utilised to train
the ANN [25]. The method is referred to as Fast Gradient Sign Method (FGSM),
Fast Gradient Method (FGM) or simply Fast Method in literature.

Basic Iterative Method
The authors of [40] offer an extension to the FGM method, applying it multiple

times using a small step size, clipping the values after every transitional pace, also
using α = 1, which translates to changing the value of each element (i.e. pixel)
by 1. In their work the authors have chosen the number of iterations heuristically

39

to be enough to reach the border of the ε max-norm ball. The formula used is as
follows:

Xadv
0 = X1, X

adv
N+1 = ClipX,ε

{
Xadv
N + αsign(∇xJ(Xadv

N , ytrue))
}

Carlini and Wagner Attack
[14] offer the solution to the adversarial example creation by formulating the

optimisation problem in a way that can be dealt with by current algorithms. The
optimisation problem is formally defined as

minimise D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

where x does not change, so one aims to find δ that minimises D(x, x+ δ). In
other words - finding δ that will change the classification. D is a distance metric;
in their paper the authors evaluate three of them - L0, L2 and L∞, however for the
use in this paper L2 was selected.

To make the formula solvable the authors redefine an objective function f so
that C(x + δ) = t when f(x + δ) ≤ 0 and offer a range of options for the f
formula. In this work the attack defined in [14] as the L2 attack was used.

Projected Gradient Descent
In [47] Projected Gradient Descent is put forward as the strongest attack and

the universal ’first order adversary’, as it is the definitive method for constrained
large-scale optimization. Essentially, the abovementioned FGM is a one-step
method for generating adversarial examples, in theory a more dangerous option
would be the multi-step procedure, which the authors call ’essentially projected
gradient descent’, formulated as follows:

Xt+1 = Πx+S(xt + αsgn(∇xL(Θ, x, y)))

Summary of Adversarial Attack Generation
Following the summary found in [47], the attack model can be definitively

formulated as a two-level optimisation problem, expressed by the following:

min
θ
ρ(Θ), where ρ(Θ) = E(x,y)∼D[max

δ∈S
L(Θ, x+ δ, y)]

where S is the set of allowed perturbations, D is the distribution, L is the
loss and E(x,y)∼D is the perturbed input before the sample is fed to the loss.
This formulation allows to consider the inner maximisation and the outer

40

minimisation problems. In essence, the four abovementioned attacks are four
different approaches to solving this formula.

3.3.5. Countering Adversarial Attacks

A number of possible defences against the effects of adversarial examples
have been put forward. One of the defences to be proposed is adversarial
retraining, either by trying to correctly classify the adversarial example itself
[72, 25, 44, 27] or by creating a separate class for adversarial examples.

This method has its merits, but is not effective on unforeseen attacks, and
causes a deterioration of the model in many applications.

There are some researchers who propose training a second classifier to detect
Adversarial Examples [24]. The authors claim robustness to FGM and Jacobian
Saliency Map Attacks [56]. The approach, however, learns to distinguish adversa-
rial examples from the non-adversarial ones using the same distribution and thus
can be evaded by formulating the attack to find adversarial examples that fool both
classifiers at the same time, as demonstrated by [13].

The general consensus among the researches with regard to the defensive me-
asures is that no fully safe system has been put forward and no truly field-proven
solutions exist [45]. The methods developed to this point apply to certain kinds of
attacks, but do not provide defence against all possible adversarial attacks. Some
of those solutions lead to the deterioration of ML performance [15].

3.4. Proposed Method for Evasion Attack Detection in Neural
Networks

dopiska krótkiej zajawki: In this section, the overall approach for Evasion
Attack Detection in Neural Networks will be presented. Firstly, the utilised dataset
is disclosed, which is followed by the applied dataset preprocessing and the IDS
training pipeline. Then the attacks on the IDS are performed and tested. The
neural activations of those attacks, as well as the activations for clear samples are
gathered; finally the attack detector is trained and tested.

In this work, the CICIDS2017 dataset was used [66]. The dataset was first cut
into four parts in a stratified fashion to ensure full coverage of all kinds of attacks
included in the dataset in all its sub-parts. This procedure results in the following
setup:

– Dataset A - used to train the IDS classifier
– Dataset B - used to test the IDS classifier and to craft the adversarial attacks

and test them on the original IDS ANN, then to acquire the activations of
neural nodes in the IDS network of benign, attack and adversarial samples to
train the Adversarial Detector

41

Tablica 16: ’IDS ANN’ trained on Dataset A and tested on Dataset B

precision recall f1-score support
ATTACK 0.96 0.97 0.97 139675
BENIGN 0.99 0.99 0.99 405383
micro avg 0.98 0.98 0.98 545058
macro avg 0.97 0.98 0.98 545058

weighted avg 0.98 0.98 0.98 545058
samples avg 0.98 0.98 0.98 545058

– Dataset C and D - used to craft test adversarial samples and acquire the
activations for the neural nodes of benign, attack and adversarial samples

All of the sub-parts were then turned into a binary classification task, leaving
all the benign samples as ’BENIGN’, but changing all the names of possible
attacks to simply ’ATTACK’.

The IDS setup was as follows: An Artificial Neural Network of 3 hidden layers
was compiled, with 40 neurons on the first hidden layer, 40 on the second and 20
on the third layer. The Rectified Linear Unit activation function was utilised and
the optimiser selected was ADAM. With batch size of 100 and 10 epochs the
network achieved an accuracy of 0.9827 when trained with Dataset A and tested
on Dataset B. The precision, recall and f1-score are showcased in Tab. 16 As seen
in the figure, the binarized dataset is fed to the architecture described above, and
the training procedure results in building a model capable of binary classification.

3.4.1. Evasion Adversarial Attacks

After testing the trained IDS (the optimisation procedure of an ANN-based
IDS can be found in [59]) four different adversarial attacks were crafted based on
the ATTACK class of Dataset B. The algorithms used for the creation of evasion
attacks were:

– Carlini and Wagner attack (CW) [14]
– Fast Gradient Sign Method (FGM) [25]
– Basic Iterative Method (BIM) [40]
– Projected Gradient Descent (PGD) [47]

1397 samples of the ’ATTACK’ class were randomly extracted from Dataset
B and turned into adversarial samples with the use of those four algorithms. The
IDS ANN classified those as 1353 ATTACKS and 44 BENIGNS. Using adversa-
rial attacks we were able to force the IDS ANN to classify 1296 ’ATTACK’ as
’BENIGN’ samples for BIM and PGD, 1324 for FGM and 59 for CW. The zeros

42

Rysunek 4: The acquisition of IDS ANN activations for a given test sample

and the results of the zeros compared to original results The abovementioned pro-
cedures introduce adversarial noise to the samples. This noise resulted in negative
values in some of the features. Those negative values were supplanted by zeros
with some loss of effectiveness of those attacks - BurntOrange (55 more attacks
were classified as benign samples with the original BIM and PGD methods, 295
more for CW and interestingly, 21 fewer for FGM.

The samples from Dataset B not used in crafting Adversarial Attacks were an-
notated as ’nonadversarial’, the Adversarial Attacks were labelled ’adversarial’.
With 5588 adversarial attack samples, a matching number of nonadversarial re-
cords was randomly picked from unused samples of Dataset B to form the base
for a balanced ’Adversarial Training Dataset’ for the adversarial attack detector.
The procedure is depicted in Fig. 5. Dataset D was subjected, except for the
balancing, to the exact same crafting/annotation procedure to form the base for
the testing dataset for the detector.

43

Rysunek 5: Forming the Adversarial Training Dataset from Dataset B

3.4.2. Detection Method

The training and testing activation datasets were fed to the IDS ANN and the
activations for all 102 neurons (including the softmax layer), as shown in Fig.4,
were recorded and annotated as adversarial or nonadversarial respectively.

The recorded activations were used to train the detector artificial neural ne-
twork. The architecture of the detector is as follows: 3 hidden layers with the
ReLU activation function, 51, 51 and 25 neurons respectively and the ADAM
optimiser. Using batch size of 100 and just 10 epochs, the detector achieved an
accuracy of 0.8506 on the testing set. The detailed results are assembled in Tab.
17.

3.5. The Evaluation of the Adversarial Attack Detector

The detector achieves high accuracy and the recall for the adversarial class
signifies that it can recognise the attacks with great promise. The precision
however is the evidence of a high number of false-positives.

Since in the process of creating the ANN-based adversarial attack detector
a dataset of neural activations of the IDS architecture was created, the authors
proceeded to test the approach using other well-established classifiers. In Tab. 18
the results of detection with Random Forest (RF) are presented. As immediately
apparent, with this kind of data RF achieves results superior to ANN, with higher

44

Tablica 17: Results of ANN-based Adversarial Attack Detector over the test set
activations

precision recall f1-score support
adversarial 0.06 0.91 0.11 5588

non-adversarial 1.00 0.85 0.92 543661
micro avg 0.85 0.85 0.85 549249
macro avg 0.53 0.88 0.51 549249

weighted avg 0.99 0.85 0.91 549249
samples avg 0.85 0.85 0.85 549249

Tablica 18: Results of Random-Forest-based Adversarial Attack Detector over the
test set activations

precision recall f1-score support
adversarial 0.11 0.99 0.20 5588

nonadv 1.00 0.91 0.95 543661
micro avg 0.92 0.91 0.92 549249
macro avg 0.56 0.95 0.58 549249

weighted avg 0.99 0.91 0.95 549249
samples avg 0.91 0.91 0.91 549249

recall and better precision. Notably, the accuracy of this approach exceeds 91%
(91.24).

Following the success of the RF-based classifier, another ensemble method
was tested. The ADABoost algorithm did not surpass the results of the Random
Forest, getting up to only 87.66% accuracy. This, however, is still a better result
than the ANN approach. The details can be found in Tab. 19

The tests were then followed by building a model relying on the Support
Vector Machine algorithm. As can be noticed from investigating the Tab. 20,

Tablica 19: Results of ADABoost-based Adversarial Attack Detector over the test
set activations

precision recall f1-score support
adversarial 0.07 0.90 0.13 5588

nonadv 1.00 0.88 0.93 543661
macro avg 0.53 0.89 0.53 549249

weighted avg 0.99 0.88 0.93 549249

45

Tablica 20: Results of an SVM-based Adversarial Attack Detector over the test
set activations

precision recall f1-score support
adversarial 0.11 0.79 0.19 5588

nonadv 1.00 0.93 0.97 543661
macro avg 0.55 0.86 0.58 549249

weighted avg 0.99 0.93 0.96 549249

Tablica 21: The results of the evasion attack detector based on the nearest neigh-
bour algorithm

precision recall f1-score support
adversarial 0.11 0.99 0.20 5588

nonadv 1.00 0.91 0.95 543661
macro avg 0.56 0.95 0.58 549249

weighted avg 0.99 0.91 0.95 549249

the SVM was not as successful in picking up on the adversarial attacks based on
the activations as the other algorithms, with the recall of only 0.79.

Finally, the same activation dataset was utilised to train a nearest neighbour
classifier. The procedure achieved results on par with the Random Forest method.

46

4. Conclusion

This thesis comprises of two parts, both offering innovative solutions for ne-
twork intrusion detection based on machine learning. The first one is a modifica-
tion of machine learning methods to be applied specifically in IDS, the other one
geared toward detecting attacks on machine learning itself.

The first part of this work showcases the influence dataset balancing methods
and hyperparameter optimisation has over the results ML achieves in IDS ap-
plications. A Gated Recurrent Unit Neural Network was tested in IDS, and a
new method was proposed and experimentally tested on a new dataset containing
relevant data. The accuracy of the proposed methods exceeded 99%.

The second part of this work focuses on adversarial attacks, and introduces a
novel method of detecting evasion attacks. The approach is capable of detecting
99% of evasion attacks against IDS. However, the high false positive rate indicates
that further improvements are possible. In this part the model extraction procedure
in cybersecurity was also conducted.

The results of conducted experiments prove that the thesis formulated at the
beginning of this work is confirmed.

47

References

[1] Charu C. Aggarwal. Neural Networks and Deep Learning A Textbook. Springer,
Cham, 2018.

[2] Tomasz Andrysiak, Łukasz Saganowski, Michał Choraś, and Rafał Kozik. Network
traffic prediction and anomaly detection based on ARFIMA model. In Advances in
Intelligent Systems and Computing, pages 545–554. Springer International Publi-
shing, 2014.

[3] Giuseppe Ateniese, Giovanni Felici, Luigi V. Mancini, Angelo Spognardi, Antonio
Villani, and Domenico Vitali. Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers. CoRR, abs/1306.4447,
2013.

[4] Agnieszka Bielec. ąnalysis of a polish bankbot".
[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support

vector machines. arXiv preprint arXiv:1206.6389, 2012.
[6] Barbara Bobowska, Michał Choraś, and Michał Woźniak. Advanced analysis

of data streams for critical infrastructures protection and cybersecurity. J. UCS,
24(5):622–633, 2018.

[7] Samarjeet Borah, Ranjit Panigrahi, and Anindita Chakraborty. An enhanced intru-
sion detection system based on clustering. In Advances in Intelligent Systems and
Computing, pages 37–45. Springer Singapore, dec 2017.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.
[9] Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. 01 2018.

[10] Christian Cachin and Jan Camenisch. Advances in cryptology - eurocrypt 2004,
international conference on the theory and applications of cryptographic techniques,
interlaken, switzerland, may 2-6, 2004, proceedings. 3027, 01 2004.

[11] G. Canfora, A. Di Sorbo, F. Mercaldo, and C. A. Visaggio. Obfuscation techniques
against signature-based detection: A case study. In 2015 Mobile Systems Technolo-
gies Workshop (MST), pages 21–26, May 2015.

[12] Alvaro A. Cardenas, Saurabh Amin, and Shankar Sastry. Secure control: Towards
survivable cyber-physical systems. In 2008 The 28th International Conference on
Distributed Computing Systems Workshops. IEEE, jun 2008.

[13] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected.
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security -
AISec ’17, 2017.

[14] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

48

[15] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey. CoRR,
abs/1810.00069, 2018.

[16] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv
preprint arXiv:1810.00069, 2018.

[17] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegel-
meyer. Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res.,
16(1):321–357, June 2002.

[18] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[19] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fe-
thi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[20] M. Choraś and R. Kozik. Machine learning techniques applied to detect cyber
attacks on web applications. Logic Journal of the IGPL, 23(1):45–56, Feb 2015.

[21] Michał Choraś, Rafał Kozik, Damian Puchalski, and Witold Hołubowicz. Cor-
relation approach for SQL injection attacks detection. In Advances in Intelligent
Systems and Computing, pages 177–185. Springer Berlin Heidelberg, 2013.

[22] Ivan Nunes da Silva · Danilo Hernane Spatti Rogerio Andrade Flauzino Luisa
Helena Bartocci Liboni Silas Franco dos Reis Alves. Artificial Neural Networks
A Practical Course. 2017.

[23] W. Gong, W. Fu, and L. Cai. A neural network based intrusion detection data fusion
model. In 2010 Third International Joint Conference on Computational Science and
Optimization, volume 2, pages 410–414, May 2010.

[24] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not
twins, 2017.

[25] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnes-
sing adversarial examples, 2014.

[26] Palash Goyal, Sumit Pandey, and Karan Jain. Unfolding Recurrent Neural Ne-
tworks, pages 119–168. Apress, Berkeley, CA, 2018.

[27] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Pa-
trick McDaniel. On the (statistical) detection of adversarial examples, 2017.

[28] F. Haddadi, S. Khanchi, M. Shetabi, and V. Derhami. Intrusion detection and attack
classification using feed-forward neural network. In 2010 Second International
Conference on Computer and Network Technology, pages 262–266, April 2010.

[29] Y. Hao, Y. Sheng, and J. Wang. Variant gated recurrent units with enco-
ders to preprocess packets for payload-aware intrusion detection. IEEE Access,
7:49985–49998, 2019.

[30] Raymond C. Borges Hink, Justin M. Beaver, Mark A. Buckner, Tommy Morris,
Uttam Adhikari, and Shengyi Pan. Machine learning for power system disturbance
and cyber-attack discrimination. In 2014 7th International Symposium on Resilient
Control Systems (ISRCS). IEEE, aug 2014.

49

[31] Nwokedi Idika and Aditya Mathur. A survey of malware detection techniques.
Purdue University, 03 2007.

[32] Witten D. Hastie T. & Tibshirani R. James, G. An introduction to statistical learning.
In Cluster Comput (2018)., 2013.

[33] Leo Kelion. ębay redirect attack puts buyers’ credentials at risk".
[34] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Ijcai, pages 1137–1145, 1995.
[35] Rafał Kozik and Michał Choraś. Solution to data imbalance problem in application

layer anomaly detection systems. pages 441–450, 04 2016.
[36] Choraś M. Kozik R. Solution to data imbalance problem in application.

Martinez-Alvarez F., Troncoso A., Quintian H., Corchado E. (Eds.): Hybrid Ar-
tificial Intelligent Systems,, LNAI vol. 9648:441–450, 2016.

[37] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014.

[38] R. Kumar Singh Gautam and E. A. Doegar. An ensemble approach for intrusion
detection system using machine learning algorithms. In 2018 8th International
Conference on Cloud Computing, Data Science Engineering (Confluence), pages
14–15, Jan 2018.

[39] Kunal and M. Dua. Machine learning approach to ids: A comprehensive review. In
2019 3rd International conference on Electronics, Communication and Aerospace
Technology (ICECA), pages 117–121, June 2019.

[40] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. arXiv preprint arXiv:1607.02533, 2016.

[41] T. Le, H. Kang, and H. Kim. The impact of pca-scale improving gru performance
for intrusion detection. In 2019 International Conference on Platform Technology
and Service (PlatCon), pages 1–6, Jan 2019.

[42] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[43] Dave Lee. "myfitnesspal breach affects millions of under armour users".
[44] Bo Li, Yevgeniy Vorobeychik, and Xinyun Chen. A general retraining framework

for scalable adversarial classification, 2016.
[45] X. Liao, L. Ding, and Y. Wang. Secure machine learning, a brief overview. In

2011 Fifth International Conference on Secure Software Integration and Reliability
Improvement - Companion, pages 26–29, June 2011.

[46] Xiaofeng Liao, Liping Ding, and Yongji Wang. Secure machine learning, a brief
overview. In 2011 Fifth International Conference on Secure Software Integration
and Reliability Improvement-Companion, pages 26–29. IEEE, 2011.

[47] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks, 2017.

[48] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Hand-
book, 2nd ed. 01 2010.

[49] Gary McGraw and Greg Morrisett. Attacking malicious code: A report to the
infosec research council. IEEE Softw., 17(5):33–41, September 2000.

[50] I. Mukhopadhyay, M. Chakraborty, S. Chakrabarti, and T. Chatterjee. Back propa-
gation neural network approach to intrusion detection system. In 2011 International
Conference on Recent Trends in Information Systems, pages 303–308, Dec 2011.

50

[51] Paul Mutton. "hackers still exploiting ebay’s stored xss vulnerabilities in 2017".
[52] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and K. Han.

Enhanced network anomaly detection based on deep neural networks. IEEE Access,
6:48231–48246, 2018.

[53] K. D. T. Nguyen, T. M. Tuan, S. H. Le, A. P. Viet, M. Ogawa, and N. L. Minh.
Comparison of three deep learning-based approaches for iot malware detection. In
2018 10th International Conference on Knowledge and Systems Engineering (KSE),
pages 382–388, Nov 2018.

[54] K. Ozkan, S. Isik, and Y. Kartal. Evaluation of convolutional neural network
features for malware detection. In 2018 6th International Symposium on Digital
Forensic and Security (ISDFS), pages 1–5, March 2018.

[55] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. Sok: Security and privacy
in machine learning. In 2018 IEEE European Symposium on Security and Privacy
(EuroSP), pages 399–414, April 2018.

[56] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Ce-
lik, and Ananthram Swami. The limitations of deep learning in adversarial settings.
2016 IEEE European Symposium on Security and Privacy (EuroSP), Mar 2016.

[57] Simone Bassis Anna Esposito Francesco Carlo Morabito Eros Pasero. Advances in
Neural Networks. 2016.

[58] T. M. Pattewar and H. A. Sonawane. Neural network based intrusion detection
using bayesian with pca and kpca feature extraction. In 2015 IEEE International
Conference on Computer Graphics, Vision and Information Security (CGVIS), pa-
ges 83–88, Nov 2015.

[59] Marek Pawlicki, Rafał Kozik, and Michał Choraś. Artificial neural network hyper-
parameter optimisation for network intrusion detection. In Intelligent Computing
Theories and Application - 15th International Conference, ICIC 2019, Nanchang,
China, August 3-6, 2019, Proceedings, Part I, pages 749–760, 2019.

[60] J. D. J. S. Pérez, M. S. Rosales, and N. Cruz-Cortés. Universal steganography
detector based on an artificial immune system for jpeg images. In 2016 IEEE
Trustcom/BigDataSE/ISPA, pages 1896–1903, Aug 2016.

[61] E. Quiring, D. Arp, and K. Rieck. Forgotten siblings: Unifying attacks on machine
learning and digital watermarking. In 2018 IEEE European Symposium on Security
and Privacy (EuroSP), pages 488–502, April 2018.

[62] K. Rahul Vigneswaran, R. Vinayakumar, K. Soman, and P. Poornachandran. Eva-
luating shallow and deep neural networks for network intrusion detection systems
in cyber security. In 2018 9th International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT), pages 1–6, July 2018.

[63] Łukasz Saganowski, Marcin Goncerzewicz, and Tomasz Andrysiak. Anomaly
detection preprocessor for SNORT IDS system. In Advances in Intelligent Systems
and Computing, pages 225–232. Springer Berlin Heidelberg, 2013.

[64] Y. Sani, A. Mohamedou, K. Ali, A. Farjamfar, M. Azman, and S. Shamsuddin. An
overview of neural networks use in anomaly intrusion detection systems. In 2009
IEEE Student Conference on Research and Development (SCOReD), pages 89–92,
Nov 2009.

[65] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning

51

attacks on neural networks. In Advances in Neural Information Processing Systems,
pages 6103–6113, 2018.

[66] Iman Sharafaldin., Arash Habibi Lashkari., and Ali A. Ghorbani. Toward gene-
rating a new intrusion detection dataset and intrusion traffic characterization. In
Proceedings of the 4th International Conference on Information Systems Security
and Privacy - Volume 1: ICISSP,, pages 108–116. INSTICC, SciTePress, 2018.

[67] Yi Shi, Yalin E. Sagduyu, Kemal Davaslioglu, and Jason H. Li. Generative ad-
versarial networks for black-box API attacks with limited training data. CoRR,
abs/1901.09113, 2019.

[68] Sandro Skansi. Introduction to Deep Learning: from logical calculus to artificial
intelligence. Springer, 2018.

[69] Sandro Skansi. Recurrent Neural Networks, pages 135–152. 01 2018.
[70] H. A. Sonawane and T. M. Pattewar. A comparative performance evaluation of

intrusion detection based on neural network and pca. In 2015 International Confe-
rence on Communications and Signal Processing (ICCSP), pages 0841–0845, April
2015.

[71] B. Subba, S. Biswas, and S. Karmakar. A neural network based system for intrusion
detection and attack classification. In 2016 Twenty Second National Conference on
Communication (NCC), pages 1–6, March 2016.

[72] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[73] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In 2009 IEEE symposium on computational
intelligence for security and defense applications, pages 1–6. IEEE, 2009.

[74] Fredrik Valeur. Real-Time Intrusion Detection Alert Correlation. PhD thesis,
UNIVERSITY OF CALIFORNIA, 2006.

[75] N. T. T. Van and T. N. Thinh. Accelerating anomaly-based ids using neural network
on gpu. In 2015 International Conference on Advanced Computing and Applica-
tions (ACOMP), pages 67–74, Nov 2015.

[76] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and
S. Venkatraman. Deep learning approach for intelligent intrusion detection system.
IEEE Access, 7:41525–41550, 2019.

[77] Eric Ke Wang, Yunming Ye, Xiaofei Xu, S. M. Yiu, L. C. K. Hui, and K. P. Chow.
Security issues and challenges for cyber physical system. In 2010 IEEE/ACM Int
Conference on Green Computing and Communications & Int Conference on Cyber,
Physical and Social Computing. IEEE, dec 2010.

[78] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu. Hast-ids: Le-
arning hierarchical spatial-temporal features using deep neural networks to improve
intrusion detection. IEEE Access, 6:1792–1806, 2018.

[79] C. Xu, J. Shen, X. Du, and F. Zhang. An intrusion detection system using a deep
neural network with gated recurrent units. IEEE Access, 6:48697–48707, 2018.

[80] K. Xu, Y. Li, R. H. Deng, and K. Chen. Deeprefiner: Multi-layer android malware
detection system applying deep neural networks. In 2018 IEEE European Sympo-
sium on Security and Privacy (EuroSP), pages 473–487, April 2018.

52

[81] M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park. Flow-based
malware detection using convolutional neural network. In 2018 International Con-
ference on Information Networking (ICOIN), pages 910–913, Jan 2018.

[82] Yi Shi, Y. Sagduyu, and A. Grushin. How to steal a machine learning classifier
with deep learning. In 2017 IEEE International Symposium on Technologies for
Homeland Security (HST), pages 1–5, April 2017.

[83] Ying Wang, Yongjun Shen, and Guidong Zhang. Research on intrusion detection
model using ensemble learning methods. In 2016 7th IEEE International Confe-
rence on Software Engineering and Service Science (ICSESS), pages 422–425, Aug
2016.

[84] X. Yuan. Phd forum: Deep learning-based real-time malware detection with
multi-stage analysis. In 2017 IEEE International Conference on Smart Computing
(SMARTCOMP), pages 1–2, May 2017.

List of Figures

1 The process pipeline starting with the NSL-KDD dataset. Similar process is
used for CICIDS2017. 17

2 IDS training pipeline with dataset balancing 21
1 Class distribution in CICIDS 2017 - Original unbalanced distribution and

after SMOTE . 24
2 Class distribution in CICIDS 2017 - After performing random

undersampling and NearMiss . 24
3 Class distribution in CICIDS 2017 - After cleaning the Tomek-Links and

performing ClusterCenters undersampling 25

4 The acquisition of IDS ANN activations for a given test sample 43
5 Forming the Adversarial Training Dataset from Dataset B 44

54

List of Tables

1 CICIDS2017 initial results . 16
2 Balanced CICIDS2017 initial results . 17
3 1 layer 10 neurons over the NSL-KDD dataset 18
4 The results of other ML methods over the CICIDS2017 dataset 19
5 4 hidden layers, 25 neurons each, CICIDS2017 dataset 20
6 CICIDS2017 (pełen zbiór) / Niezbalansowany 22
7 CICIDS2017 / Random Subsampling . 23
8 CICIDS2017 / Random Subsampling down to 7141 instances per class /

RandomForest . 27
9 CICIDS2017 / Random Subsampling down to 1174 instances per class /

RandomForest . 28
10 CICIDS2017 / Cost-Sensitive RandomForest 29
11 Random Subsampling-Balanced CICIDS2017, GRU feature extractor,

RandomForest classifier accuracy: 0.9918 31
12 Random Subsampling-Balanced CICIDS2017, GRU feature extractor, PCA

before classifier, RandomForest classifier , accuracy: 0.9927 32
13 Random Subsampling-Balanced CICIDS2017, GRU feature extractor,

cost-sensitive RandomForest classifier , accuracy: 0.9903 32

14 Original Classifier’s confusion matrix on subset C 37
15 Extracted Classifier’s confusion matrix on subset C 37
16 ’IDS ANN’ trained on Dataset A and tested on Dataset B 42
17 Results of ANN-based Adversarial Attack Detector over the test set activations 45
18 Results of Random-Forest-based Adversarial Attack Detector over the test

set activations . 45
19 Results of ADABoost-based Adversarial Attack Detector over the test set

activations . 45
20 Results of an SVM-based Adversarial Attack Detector over the test set

activations . 46
21 The results of the evasion attack detector based on the nearest neighbour

algorithm . 46

55

	Introduction
	Motivation

	Part One: Network Intrusion Detection
	The Signature-based Approach
	The Anomaly-based Approach
	Machine Learning for Intrusion Detection - State of The Art
	Artificial Neural Networks in Intrusion Detection
	The Proposed Method Based on Artificial Neural Network
	The Usage of Backpropagation
	Improving the selected algorithms with hyperparameter optimization
	Dimensionality Reduction

	Experimental Setup and Results
	Description of chosen datasets
	Experimental Setup
	Cross-Validation
	Comparison to other state of the art machine learning algorithms

	Results
	Machine Learning Approach Enhanced with Data Balancer
	Balancing Methods
	Data-related Balancing Methods
	Algorithm-related Balancing Methods
	Results and Perspectives

	Gated Recurrent Unit in Network Intrusion Detection
	Recurrent Neural Networks
	Long Short-Term Memory and GRU

	Using Gated Recurrent Units for feature extraction

	Part two: Adversarial Attack Detection
	Introduction
	Overview of adversarial attacks
	Experiments
	Original Classifier
	Model Extraction
	Experimental Process
	Adversarial Machine Learning and Attack Generation
	Countering Adversarial Attacks

	Proposed Method for Evasion Attack Detection in Neural Networks
	 Evasion Adversarial Attacks
	Detection Method

	The Evaluation of the Adversarial Attack Detector

	Conclusion
	References
	List of Figures
	List of Tables

